PUBLIC HEALTH REPORTS

MORBIDITY AMONG SCHOOL CHILDREN IN HAGERSTOWN, MD.

Abstract

CASES OF ILLNESS AND DAYS LOST FROM SCHOOL ON ACCOUNT OF ILLNESS AMONG WHITE SCHOOL CHILDREN DURING THE SCHOOL MONTHS, DECEMBER, 1921, TO MAY, 1923, INCLUSIVE. 1

By Selwyn D. Collins, Associate Statistician, United States Public Health Service.
Of the total population of nearly $106,000,000$ persons in the United States in 1920, about 33, 000, 000, or 31 per cent, were 5 to 20 years of age. Of the $33,000,000$ children of school age, 65 per cent were actually attending school. Furthermore, the $22,000,000$ children attending schools of one kind or another constituted nearly 20 per cent of the total population of the United States. ${ }^{2}$ Considering school attendance as an occupation, these children comprise a large and more or less homogeneous industrial group. Little or nothing is known about the morbidity of this group except in the case of the notifiable diseases-largely the so-called communicable diseases of children.

In the autumn of 1921 the city of Hagerstown, Md., was selected by the United States Public Health Service as a fairly representative American community in which to study morbidity among school children. The investigation was carried on in cooperation with the Washington County Health Demonstration and the public school authorities of Hagerstown.

The population of Hagerstown, according to the census of 1920, was 28,064 ; of the total population, 93 per cent were native white and 88 per cent were native white of native parents, 5 per cent were negroes, and less than 2 per cent were foreign-born white. ${ }^{3}$

The school attendance in 1920 was 5,071 . Of this number 92 per cent were native white children of native parents, 4 per cent were negroes, and 4 per cent were foreign born or children of foreign-born or mixed parentage. ${ }^{4}$

The method of collecting data.-In order to place as little additional work as possible on the teachers, whose time is as fully occupied in

[^0]Hagerstown as elsewhere, it was arranged that the reported data should be assembled in the office of the local representative of the United States Public Health Service. At the beginning of the school year a record was started for each child, and to this record was transferred the data submitted weekly by teachers, on a specially prepared form, showing the names of all the children who had been absent on account of sickness and had returned to school during the current week, together with the cause of the illness and the number of school days each child was absent. A record was also kept of all new entrants and withdrawals from school in order that an accurate count could be made of the number of children under observation at any given time or during the year as a whole. In other words, the records of sickness and of the days the child was enrolled (under observation) were brought together on a single card for each child, together with other data regarding sex, age, race, school grade, the character of school work, and the like.

It is fully realized that some children may have reported illness when they were not really sick. No investigation was made at home; but, as is usual in public schools, written excuses were required from the parents when a child returned after an absence from school. Every effort was made to eliminate false reports. A teacher, particularly in the lower grades, is usually familiar with a great many of the details of the lives of her pupils, and it is felt that she is therefore in a position to get an accurate report as to whether the absence was due to sickness or to some other cause. The diagnoses are, of course, only approximate and are stated in the language of the laity rather than in medical terms because they could not be made or confirmed by physicians.

Description of data.-Owing to unavoidable delay in starting the work, data for only six months of the 1921-22 school year were used. Records were kept for the whole of the 1922-23 school year and also for 1923-24. However, the present report includes only the data up to the end of the 1922-23 school year.

The 1921-22 data used in this study consist of the morbidity records of 3,712 white children. For the year 1922-23 the data consist of the records of 5,126 white children-practically all of the white children of school age in Hagerstown. Table 1 shows the sex and age distribution of the children under observation for each of the two school years. Age in this table and in all other tabulations in this study means age at nearest birthday as of the middle of the school year.

Table 1.-Number and percentage distribution according to sex and age of children under observation for sickness during each school year-White school children of Hagerstown, Md.

Age nearest birthday.	Number.						Percentage.					
	School year 1921-22.			School year 1922-23.			School year 1921-22.			School year 1922-23.		
	Both sexes.	Boys.	Girls.	Both sexes.	Boys.	Girls.	Both sexes	Boys.	Girls.	Both sexes.	Boys.	Girls.
All ages.-	3, 712	1,837	1,875	5, 126	2, 614	2,512	100.0	100.0	100.0	100.0	100.0	100.0
5.	5	2	3	14	,	8	0.1	0.1	0.2	0.3	0.3	0.4
	251	129	122	238	121	117	7.0	7.3	6.7	5. 2	5.2	5.1
	417	208	209	491	248	243	11.6	11.8	11.5	10.7	10.7	10.7
8	433	213	220	517	273	244	12.1	12.1	12.1	11.2	11.8	10.7
9	343	171	172	477	235	242	9.6	9.7	9.5	10.4	10.1	10.6
10.	357	186	171	442	215	227	10.0	10.5	9.4	9.6	9.3	10.0
11.	338	155	183	446	230	216	9.4	8.8	10.1	9.7	9.9	9.5
12	313	153	160	434	216	218	8.7	8.7	8.8	9.4	9.3	9.6
13.	285	119	146	428	180	246	7.4	6.7	8.0	9.3	7.7	10.8
14.	257	123	134	366	178	188	7.2	7.0	7.4	8.0	7.7	8.2
15.	235	115	120	276	136	140	6.6	6. 5	6. 6	6. 0	5.9	6. 1
16.	180	99	81	198	109	89	5.0	5.6	4.5	4.3	4.7	3.9
17.	102	45	57	144	80	64	2.8	2.5	3.1	3. 1	3.4	2.8
18.	67	38	29	95	65	30	1.9	2.2	1.6	2.1	2.8	1.3
19.	14	7	7	29	22	7	0.4	0.4	0.4	0.6	0.9	0.3
20.	2	1	1	7	7		0.1	0.1	0.1	0.2	0.3	
21.	${ }_{131}^{2}$	2		624	2		0.1	0.1			0.1	
Unknown age.-	131	71	60	524	291	233						

It will be observed that the distribution of the children of each sex according to age is similar.

MORBIDITY FROM ALL CAUSES.

It is obvious that the morbidity can be measured and the importance of a single disease as a cause of absence from school can be assessed in a given population in two ways. According to one method the measure may be based on knowledge of the number of cases of illness occurring in the school population, and by the other on the time lost from school on account of these cases of illness. The rates based on these two sets of data may or may not be parallel. For example, a few cases of whooping cough or scarlet fever, diseases of more or less prolonged duration, may cause more loss of time from school than many cases of headache. This possibility suggests a third measure of morbidity-the days lost per case. This measure is a definite indicator of the soriousness of a disease from the standpoint of time lost from school.

Method of computation.-In computing the morbidity rates for this study, the advisability of basing them on the rate per 10,000 days enrolled ${ }^{5}$ was considered because this method has the advantage of putting the rates on a comparable basis without further adjustment. The common practice in studies of morbidity and mortality among adults is to find the annual rate; in other words, no matter what

[^1]period is covered, to reduce the rate to the basis of a calendar year of 365 days by finding what the rate would be for a whole year. This latter method was not adopted, because to take the sickness occurring in the school months, which include the winter months with a higher sickness prevalence, and reduce it to a calendar-year basis does not seem to be a fair statement of the rate per calendar year. In this latitude more cases of sickness ordinarily occur in the winter than in the summer. It can not be assumed, therefore, that the rates continue the same during the summer as during the winter school months. It seems more desirable to reduce the rates to the basis of a school year; that is, to compute the rate per 1,000 children per full-time school year. It is particularly necessary to use a fulltime school year because some children are entering and some are dropping out of the school from time to time during each semester.

The length of the school year varies in different cities. In some the term is 9 months and in others 10 months; but probably in a majority of them the term is 9 months with an average of 20 school days per month, or 180 school days in a school year. In Hagerstown, during the school year 1921-22, the actual number of days of school was 180, and in 1922-23, 184 days, exclusive of Saturdays, Sundays, and holidays. The computations in this study, however, are based on a school year of 180 school days, and the rates are computed as cases occurring per 1,000 school children for a full-time school year of 180 school days. Likewise, the rates for the school days lost were computed on the basis of 1,000 children per school year of 180 school days.

Morbidity rates.-The rates for all causes of illness are shown in Table 2, by sex and age, as is also the number of days lost per case of illness. For convenience of comparison with studies in which the rates are expressed in other ways, ${ }^{6}$ the case rates per 100,000 days enrolled and the percentage of the total possible days of attendance which were lost on account of sickness are also shown.

[^2]Table 2.-Morbidity from all causes, by sex and age, among white school children of Hagerstown, Md., December, 1921, to May, 1923, inclusive.

Sex.	All ages.	Age nearest birthday.											
		6 and under	7	8	9	10	11	12	13	14	15	$\begin{gathered} 16 \text { and } \\ \text { over. } \end{gathered}$	$\begin{gathered} \text { Unknown } \\ \text { age. } \end{gathered}$
Cases of sickness per 1,000 Childdren per school year of 180 SChool days.													
Both sexes..	2, 2 2, 394		2,779	2,721	2,541	2,297	$\begin{array}{r}2,134 \\ 2,054 \\ \hline\end{array}$	2,300 210	2,106	2,073	1, 1,88	1,995	2,091
Girls.......	2,476	- ${ }^{2,171}$	2,656	- 2,780	2,629	2,557	- 2,213	2,387	2, 268	2,237	1,989	2,449	2,287

OF SICKNESS PER 1,000 CHILDREN PER SCHOOL YEAR OF 180 SCHOOL DAYS.

Table 2.-Morbidity from all causes, by sex and age, among white school children of Hagerstown, Md., December, 1921, to May, 192s, inclusive-Continued.

Sex.	All ages.	Age nearest birthday.											
		6 and under.	7	8	9	10	11	12	13	14	15	16 and over.	age. Unknown
NUMBER OF CASES OF SICKNESS.													
Both sexes..	17,847	1,223	2,179	2,231	1,816	1,580	1,441	1,484	1,277	1,123	811	1,427	1,255
Boys........	8,479	555	1,144	1,121	865	701	688	702	491	497	382	682	651
Girls	9,368	668	1,035	1,110	951	879	753	782	786	628	429	745	604

NUMBER OF DAYS LOST FROM SICKNESS.													
Both sexes..	55, 800.0	5,443. 0	9,095. 5	8,063.0	5,803.0	4,429.5	3,819.0	3,898. 0	3,214.0	2,895. 0	-2,000. 5	3,273.0	3,806. 5
Boys.	26, 588.0	2,602. 5	4,967.0	3,800.0	2,742. 5	1,955.0	1,721.0	1,723.5	1,303.0	1,262.5	906.5	1,723.0	1,881.5
Girls	29, 212.0	2,840.5	4,128.5	4,263.0	3,060. 5	2,474. 5	2,098.0	2,174.5	1,911.0	1,632.5	1,094.0	1,550.0	1,985.0
NUMBER OF DAYS OF EXPOSURE.													
Both sexes.	1,376, 910	77,307	141,139	147, 561	128,627	123,825	121, 535	116, 136	109, 134	97, 497	77,359	128, 745	108,045
Boys	695, 763	39,300	70, 984	75,945	63, 516	61,951	60, 299	57, 171	46, 765	47, 118	38, 539	73, 999	60,096
Girls.	681, 147	37,917	70,155	71, 616	65, 111	61, 874	61, 236	58,965	62,369	50,379	38,820	54,756	47,949
NUMBER OF FULLTIME SCHOOL YEARS OF EXPOSURE.													
Both sexes.	7,649. 50		784.11		714.59	687.92	675.19	645.20	606.30		429.78	715.25	
Boys.......	3,865. 35	218.83	394.36	421.92	352.87	344.17	334. 99	317.62	259.81	281.76	214, 11	411.05	338.87
Girls.	3,784. 15	210.65	389.75	397.87	361.73	343.74	340.20	327.58	346. 49	279.88	215.67	304.20	286.88

Fig. 1.

It will be noted that there were 2,333 cases per 1,000 ehildren per school year, or 2.3 cases per child, with a loss of 7.3 school days per child per year, or 4.1 per cent of the total possible days of attendance The boys had 2.2 cases per child against 2.5 for girls, and 6.9 days lost against 7.7 days for girls. The days lost per case, however, were practically the same for boys and girls. Figure 1 shows these rates graphically.

The scales in Figure 1 are arranged so that the rate for all ages combined is the same absolute height on each of the three graphs. The variation in the rates at different ages, therefore, can be judged accurately from the graph. The case rate shows the least variation and the days lost per child shows the greatest variation. In every instance there is a fairly marked decrease in the rates as age increases. In the rates for the days lost per child and the days lost per case the decrease is considerably more marked from 6 to 10 years than after those ages.

The graphs on the right in Figure 1 show the rates for boys and girls separately. The case rates and the days lost per person are consistently higher for girls than for boys, the only exception being the 7 -year-old children. But the days lost per case do not show any consistent difference between the two sexes.

CAUSES OF ILlNESG.

Owing to the more common occurrence of the communicable diseases during childhood and the frequently demonstrated possibility of controlling them, it is important to know what diseases are the chief causes of absence from school so that parents may be induced to give support and cooperation to the health and school authorities in enforcing measures to combat them. Table 3 shows both the case rates and the days lost per child by cause and sex.
Table 3.-Morbidity among white school children of all ages, by sex and cause, in Hagerstovn, Md., December, 1921, to May, 1923, inclusive.

Diagnosis.	Cases per 1,000 children per school year of 180 school days.			School days lost per 1,000 children per school year of 180 school days.		
	Both sexes.	Boys.	Girls.	Both sexes.	Boys.	Girls.
All causes..	2,333. 1	2, 193.6	2,475.6	7,295	6,879	7,720
Measles.-	52.8.	51.2	54.4	643	629	658
Mumps.-.-.--	1.2	. 8	1.6	${ }^{6}$	2	11
Whooping cough	13. 7	16.8	10.6	346	411	279
Chicken pox.	13.3	16.3	10.3	113	139	87
Scarjet fever	4.1	3.4	4.8	96	94	97
Diphtheria.	3. 9	4. 1	3.7	67	70	65
Croup	16.7	18.4	[5. 1	46	51	41
Colds.	744.0	749.7	738.1	1,860	1,844	1,876
Grippe and influenza	160.3	140.0	181.0	960	840	1,081
Tonsillitis and sore throat	227.9	194.8	261.6	625	519	734
Bronchitis and cough.	11.5	8.0	15.1	66	43	89
Pneumonia -------	5.4	6.0	4.8	105	109	102
Other respiratory diseases and	5.0	3.1	6.9	24	19	29
Digestive diseases and disord	235.8	226.4	245.5	445	387	505

Tablè 3.-Morbidity among white school children of all ages, by sex and cause, in Hagerstown, Md., December, 1921, to May, 1923, inclusive-Continued.

Diagnosis.	Cases per 1,000 children per school year of 180 school days.			School days lost per 1,000 children per school year of 180 school days.		
	Both sexes.	Boys.	Girls.	Both sexes.	Boys.	Girls.
Toothache and diseases of the teeth	115.8	114.3	117.3	178	168	187
Earache and ear diseases.	49.8	43.7	56.0	127	110	145
Diseases and disorders of the eyes	42.6	39.8	45.5	130	129	132
Headache and neuralgia	294.9	252.0	338.8	345	309	381
Scabies.	3.3	3.9	2.6	38	35	41
Pediculosis.	5.1	2.3	7.9	50	16	84
Other skin discases...	27.2	30.8	23.5	117	141	92
Accidents, minor and major.	74.8	86.4	62.9	213	263	163
Tonsil or adenoid operation	8.2	8.3	8.2	86	65	107
Menstruation.			34.1			39
Other diseases and disorders	69.0	56.7	81.7	282	228	337
Unknown diagnosis.	129.9	116.4	1438	306	255	357
Number of days of exposure.				1,376, 910	695, 763	681, 147
Full time years of exposure.				7,649. 50	3,865. 35	3,784. 15

[^3]In Figure 2 the case rates for both sexes have been arranged according to the size of the rate, and plotted. The days lost per 1,000 children per school year are also shown for each disease.

The scales in this figure are so arranged that the bars for the case rate and the days lost per child for all causes combined would be of equal length, if shown on the graph, and, therefore, the absolute length of the two bars for any disease are comparable as a measure

[^4]Fig. 3.
of the importance of the disease in terms of cases as compared with the days lost per child.

In point of frequency of cases as well as the days lost, common colds head the list; headaches come second and the digestive disorders are third so far as cases are concerned.

On the other hand, with regard to the number of days lost, "grippe" and influenza, tonsillitis, and sore throat, and measles each cause
considerably more absence than either headache or digestive disorders.

Case rates and days lost for each sex.-It will be remembered that for all causes combined both the case rates and the days lost per child for girls were quite consistently greater than for boys. In Figure 3 are shown the case rates for boys and girls by diseases. While these rates do not take inte account differences in age distribution, it will be seen in Table 1 that the age distributions of the two sexes

* Includes respiratory diseases other than colds, grippe and influenza, tonsillitis and sore throat, bronchitis and cough, and pneumonia.
** Includes skin diseases other than scabies and pediculosis.
Fig. 4.
are so similar that the unadjusted rates for the boys and girls are comparable.

The case rates for a majority of the diseases considered are slightly higher for girls than for boys, although this is not true for colds, accidents, miscellaneous skin diseases, croup, whooping cough, chicken pox, pneumonia, diphtheria, and scabies. Whether or not
these differences between the sexes for different diseases are significant is best determined by an analysis according to age. In order to have a statistically satisfactory number of cases in certain age groups, this analysis is reserved until the third year's records, which are now being collected, are added to the data presented in this article.

Days lost per case.-On reference to Figure 1 it will be seen that there is no consistent difference between the sexes in the days lost per case because of illness from all causes. However, the days lost per case decreased considerably with age, particularly up to 10 or 11 years. Table 4 shows for each disease considered the days lost per case for all ages and in two age groups, viz, 10 years and under and 11 years and over. Figure 4 shows graphically for all ages the days lost per case. Whooping cough stands at the head of the list with $\mathbf{2 5 . 2}$ days' absence for each case of the disease. The averages for scarlet fever, pneumonia, and diphtheria are all above 15 days per case. Measles is next with an average of 12.2 days per case.

Table 4.-Average number of days lost from school per case of certain diseaseswhite school children in Hagerstown, Md., December, 1921; to May, 1923, inclusive.

Diagnosis.	Both sexes.			Boys.			Girls.		
	$\begin{gathered} \text { All } \\ \text { ages. } \end{gathered}$	5-10 years.	$\begin{gathered} 11 \text { years } \\ \text { and } \\ \text { over. } \end{gathered}$	All ages.	$\begin{gathered} 5-10 \\ \text { years. } \end{gathered}$	$\left\lvert\, \begin{gathered} 11 \text { years } \\ \text { and } \\ \text { over. } \end{gathered}\right.$	All	$\begin{gathered} 5-10 \\ \text { years. } \end{gathered}$	$\begin{aligned} & 11 \text { years } \\ & \text { and } \\ & \text { over. } \end{aligned}$

SCHOOL DAYS LOST PER CASE.

All causes.	3.1	3.6	2.5	3.1	3.7	25	3.1	3.6	2.5
Measles	12.2	12.0	13.5	12.3	11.9	14.2	12.1	12.1	12.7
Mumps.	5.4	5.0	7.0	3.0	4.0	1.0	6.7	5.4	13.0
Whooping coug	25.2	25.7	17.8	24.5	24.8	19.3	26.4	27.2	16.3
Chicken pox	8.5	8.4	7.0	8.5	8.5	7.7	8.5	8.3	6.0
Scarlet fever	23.6	24.3	23.0	28.1	29.7	9.0	20.4	19.3	26.5
Diphtheria	17.2	15.6	19.4	16.9	15.8	17.6	17.5	15.5	32.0
Croup.	2.8	2.8	2.1	2.8	2.9	1.6	2.7	2.7	3.0
Colds.	2.5	2.7	2.2	2.5	2.7	2.2	2.5	2.7	2.2
Grippe and influenza	6.0	6.5	5.5	6.0	6.6	5.4	6.0	6.4	5.5
Tonsillitis and sore thro	2.7	2.9	2.7	2.7	28	2.6	2.7	2.9	2.7
Bronchitis and cough	5.7	5.2	6.5	5.3	4.1	9.1	5.9	6.0	5.6
Pneumonia_.-.......	19.7	19.7	22.3	18.3	19.1	16.3	21.4	20.4	30.3
Other respiratory diseases and disorders.	4.8	6.7	3.3	6.2	10.4	4.3	4.2	5.0	2.8
Digestive diseases and disorders. \qquad	1.9	2.0	1.8	1.7	1.8	1.6	2.1	2.1	2.0
Toothache and diseases of the teeth	1.5	1.6		1.5	1.5	5	1.6		
Earache and ear diseases	2.6	2.5	2.8	2.5	2.5	2.5	1.6	1.6	1.6
Diseases and disorders of the	3.1	3.3	28	3.2	3.4	3.2	29	3.2	3
Headache and neuralgia	1.2	1.2	1.1	1.2	1.3	1.1	1.1	1.2	1.1
Scabies	11.8	13.1	11.5	9.1	11.5	1.5	15.7	15.4	21.5
Pediculosis	9.7	8.4	11:8	7.1	7.1		10.5	9.0	11.8
Other skin diseases.	4.3	4.5	3.9	4.6	4.7	4.1	3.9	4.2	3.6
Accidents, minor and major-	2.9	2.8	28	3.0	2.8	3.1	2.6	2.7	2.5
Tonsil or adenoid operations.	10.4	10.1	10.7	7.9	8.3	5. 6	13.1	12.4	15.0
Menstruation-...---.......							1.1		1.1
Other diseases and Unknown diagnosis........---	4.1	3.9	4.0 2.3	4.0 2.2	3.8 2.1	4.5 2.3	4.1 2.5	4.08	3.7 2.3

Table 4.-Average number of days lost from school per case of certain diseaseswhite school children in Hagerstown, Md., December, 1921, to May, 1929, in-clusive-Continued.

Diagnosis.	Both sexes.			Boys.			Girls.		
	$\begin{aligned} & \text { All } \\ & \text { ages. } \end{aligned}$	5-10 years.	$\begin{aligned} & 11 \text { years } \\ & \text { and } \\ & \text { over. } \end{aligned}$	All ages.	5-10 years.	$\begin{gathered} 11 \text { years } \\ \text { and } \\ \text { over. } \end{gathered}$	All ages.	5-10 years.	$\begin{aligned} & 11 \text { years } \\ & \text { and } \\ & \text { over. } \end{aligned}$
NUMBER OF CASES OF SICKNESS.									
All causes.....-.-.-.----	17,847	9,029	7,563	8,479	4,386	3,442	9,368	4,643	4,121
Measles.	404	366	26	198	177	14	206	189	12
Mumps.	9	7	2	3	2	1	6	5	1
Whooping cough.-.-.-------	105	96	6	65	59	3	40	37	3
	102	90	5	63	55	3	39	35	2
Scarlet fever	31	25	5	13	12	1	18	13	4
Diphtheria.	30	20	8	16	8	7	14	12	1
Croup....-	188	119	8	71	65	- 5	57	4	3
Colds.	5, 691	3, 099	2,221	2,898	1,521	1,175	2,793	1,578	1,046
Grippe and influenzs.	1,226	507	622	541	, 238	1, 255	685	1, 269	- 367
Tonsillitis and sore throat	1,743	817	805	753	378	310	990	439	495
Bronchitis and cough.....---	-88	52	27	31	22	7	57	30	20
Preumonia....-.-....	41	30	7	23	16	4	18	14	3
Other respiratory diseases and disorders.	38	13	22	12	4	7	26	9	15
Digestive diseases and disorders.	1,804	879	807	875	438	386	929	441	421
Toothache and diseases of the teeth	886	409	401	442	199	189	444	210	212
Earache and ear diseases.-.--	381	269	87	169	112	40	212	157	- 47
Diseases and disorders of the cyes	326	158	144	154	70	72	172	88	72
Headache and neuralgia...--	2, 256	904	1,174	974	406	491	1,282	498	683
Scabies	25	18	- 4	15	11	2	10	7	2
	39	30	8	9	9		30	21	8
Other skin diseases ---.-.-.-------	208	104	93	119	54	55	89	50	38
Accidents, minor and major---	572	238	- 277	334	145	154	238	93	123
Tonsil or adenoid operations.	63	49	11	32	27	5	31 129	22	6 124
Other diseases and disorders.	528	254	231	219	116	88	309	138	143
Unknown diagnosis.........---	994	475	439	450	241	169	544	234	270

It must be borne in mind, in considering the number of days lost per case for each disease, that the basis is the number of school days lost, and that an absence of 20 days means a total duration of at least four weeks. An absence of five days may mean just five days of illness, or it may mean as much as nine days if the onset of the case occurs on Saturday and the last day of illness on the second Sunday following. The intervention of holidays may also shorten the calculated duration of absence due to a case of illness. Cases developing during the Christmas holidays and with a total duration of two weeks extending a few days into the school days of January, therefore, are a source of error. The school days lost per case is, therefore, an understatement of the average disabling illness resulting from an attack of a given disease. In this study all cases of illness were included regardless of duration. The minimum time lost counted as an absence was one-half day. ${ }^{7}$

As already noted, the days lost per case of sickness from all causes combined decreased considerably with age. In Figure 5 is shown the number of days lost per case for each disease in children 10 years of

[^5]age and under and for those 11 years old and over. Of the 26 classifications shown in Table 4, the averages for 16 diseases are greater in the younger group; but for pneumonia, diphtheria, measles, tonsillectomy, pediculosis, bronchitis and cough, mumps, earache, and miscellaneous or other causes of sickness the average per case is larger

[^6]Fig. 5.
in the older group. In the case of accidents the average is the same in the two groups. The number of cases of certain diseases was too small to be of much statistical value.

[^7]Table 5.-Case rates of sickness from certain causes by single years of age among white school children of both sexes in Hagerstown, Md., December, 1921, to May, 1923, inclusive.

		Age nearest birthday.											
Diagnosis.	All ages.	6 and under.	7	8	9	10	11	12	13	14	15	16 and over.	Unknown age.
CASES PER 1,000 CHILDREN PER SCHOOL YEAR OF 180 SCHOOL DAYS,													
All causes.-	2,333	2,848	2, 779	2, 721	2,541	2,297	2,134	2,300	2, 106	2,073	1,887	1,995	2,091
Measles...	53	193	195	101	45	22	19	11		4		1	20
Whooping cough	14 13	58 44	41 55	$\begin{array}{r}27 \\ 22 \\ \hline\end{array}$	14 8	${ }^{10}$	1 3 1	$\begin{array}{r}3 \\ 5 \\ \hline\end{array}$	2		2	1	5
Scarlet fever.	+ 4	$\begin{array}{r}74 \\ \hline\end{array}$	$\stackrel{8}{9}$	12	4	3	1	3		2		1	12
Diphtheria.	4	7	10	6	4	1	1	6	2	4			3
Croup -.....................-	17	40	46	45	24	17	6	5		2			2
All respiratory diseases and disorders	1,154	1,467	1,403	1,372	1,227	1,144	1,074	1,040	1,004	942	994	1,064	1,008
Colds..................................	744	1, 111	999	937	812	714	615	. 639	554	582	589	685	${ }^{618}$
Tonsillitis and sore throat	160 228	140 151	13 207	151	139 267	145 282	151	138	198 242	146	191 177	210 155	162
Other respiratory diseases and disorders..-	22	65	40	16	10	23	12	15	${ }^{242} 10$	203	177	14	202 27
Digestive discases and disorders.	236	237	241	279	299	211	210	287	203	236	209	194	197
Toothache and diseases of the teeth	116	119	98	124	126	129	117	115	145	96	105	88	127
Earache and ear diseases........-	50	121	82	79	74	51	43	26	21	26	14	11	42
Diseases and disorders of the eyes.	43	28	46	57	43	47	27	46	54	50	37	28	40
Headache and neuralgia -.......	295	154	204	261	327	334	333	398	365	325	270	250	297
Skin diseases and disorders..	36 75	54	37	54	52	28	30	37	30	35	5	31	25
Accidents, minor and major --	75	42	62	74	87	70	87	99	73	79	51	63	95
Tonsil or adenoid operations..	8 17	16	22	11	11	12	4	3 5	5 15	2	49	3 105	5
Other and unknown diseases and disorders.	200	281	228	195	195	212	176	211	183	242	151	154	205

Table 5.-Case rates of sickness from certain causes by single years of age among white school children of both sexes in Hagerstown, Md., December, 1921, to May, 1923, inclusive-Continued.

Diagnosis.	All ages.	Age nearest birthday.											
		6 and under.	7	8	9	10	11	12	13	14	15	16 and over.	Unknown age.
RATIO OF THE RATE IN EACH AGE TO THE RATE FOR ALL AGES (ALL AGES $=100$)-Continued.													
Other respiratory diseases and disorders...	100	295	182	73	45	105	55	68	45	50	188	64	123
Digestive diseases and disorders...-......-	100	100	102	118	127	. 89	89	122	86	100	89	82	83
Toothache and diseases of the teeth........-	100	103	84	107	109	111	- $\begin{array}{r}101 \\ \hline 88\end{array}$	99 52	125	83 52	91 28	76	109 84
Diseases and disorders of the eyes.............--	100	${ }^{242}$	107	133	100	109	${ }_{63} 8$	107	128	116	${ }_{86} 8$	65	${ }_{98}^{84}$
Headache and neuralgia..........................	100	52	69	88	111	113	113	135	124	110	92	85	101
Skin diseases and disorders...-.........-...-	100	150	103	150	144	78	83	103	83	97	14	86	69
Accidents, minor and major................-	100	56	83	99	116	${ }^{93}$	116	132	$\stackrel{97}{93}$	105	68	84	127
Tonsil or adenoid operations.........-......-	100	200	275	138	138	150	50	38	8	25	28	38 618	63 47
Other and unknown diseeses and disorders.	100	131	114	98	98	108	88	108	92	121	76	77	103

NUMBER OF CASES OF SICKNESS.													
All causes..	17,847	1,223	2,179	2,231	1,816	1,580	1,441	1,484	1,277	1,123	811	1,427	1,255
Measles	404	83	153	83	32	15	13	7	3	2		1	12
	105	25	32	22	10	7	1	2	1	--	1	1	3
Chicken pox....	102	19	43	18	6	4	2	3					7
Scarlet fover.	31	3	7	10	3	2	. 1	2		1		1	1
Diphtheria.	30	3	8	5	3	1	1	4	1	2			2
Croup....	128	17	36	37	17	12	4	3		1			1
All respiratory diseases and disorders.....--	8,827	630	1,100	1,125	877	787	725	671	609	510	427	761	605
	5,691	477	783	768	580	491	415	412	336	- 315	253	490	871
Grippe and influenza	1,226	60	124	124	99	100	102	89	120	79	82	150	97
Tonsilitis and sore throat	1,743	65	162	220	191	180	200	160	147	110	76	111	121
Other respiratory diseases and disorders...-	167	28	31	13	7	16	8	10	6	6	16	10	16
Digestive diseases and disorders.........	1,804	102	189	229	214	145	142	185	123	128	90	139	118
Tootache and diseases of the teeth......------	1,880	51	77	102	90	89	79	74	88	52	45	63	76
	381	52	64	65	53	35	29	17	13	14	6	8	25
Diseases and disorders of the eyes	326	12	36	47	31	32	18	30	33	27	16	20	24
Headache and neuralgia..........	2, 258	66	160	214	234	230	225	257	221	176	116	179	178
Bkin diseases and disorders	272	23	29	44	37	19	20	24	18	19	2	22	15
Accidents, minor and major.	572	18	49	61	62	48	59	64	44	43	22	45	57
Tonsil or adenoid operations..................-----	63		17	9	8	8	3	2	3	1	-	2	3
	1.129		179	180	139	146	119	3 138	${ }^{9}$	13	${ }_{65}^{21}$	75	
Other and unknown diseases and disorders.	1,531	112	179	160	138	146	119	130	111	131	6	110	12

EXPOSURE.

Number of days of exposure Number of full-time years.	$1,376,910$ $7,649.50$	77,307 429.48	141,139 784.11	147,561 819.78	128,627 714.59	123,825 687.92	121,535 675.19	116,136 645.20	$\begin{array}{r} 109,134 \\ 6 C 6.30 \end{array}$	$\begin{aligned} & 97,497 \\ & 541.65 \end{aligned}$	$\begin{aligned} & 77,359 \\ & 429.78 \end{aligned}$	$\begin{array}{r} 128,745 \\ 715.25 \end{array}$	$\begin{array}{r} 108,045 \\ 600.25 \end{array}$
Table 6.-Days lost from certain causes of sickness by single years of age among white school chil December, 1921, to. May, 1923, inclusive.													
Diagnosis.	$\underset{\text { all }}{\text { All }}$	Age nearest birthday.											
		6 and under.	7	8	9	10	11	12	13	14	15	16 and over.	Unknown agc.

Table 6．－Days lost from certain causes of sickncss by single years of age among white school children of both sexes in Hagerstown，Md．， December，19：1，to May，192S，inclusive－Continued．

Diagnosis．	$\begin{gathered} \text { All } \\ \text { ages. } \end{gathered}$	Age nearest birthday．											
		6 and under．	7	8	9	10	11	12	13	14	15	16 and over．	$\begin{gathered} \text { Unknown } \\ \text { age. } \end{gathered}$
RATIO OF THE RATE IN EACH AGE TO THE RATE FOR ALL Λ（GES（ALL AGES＝100）．													
All causes．	100	174	159	135	111	88	78	83	73	73	64	63	88
Measles	100	385	341	189	90	47	38	21	5	16		5	45
Whooping cough	100 100	466 276	312	196 176	98 80	56	$\begin{array}{r}8 \\ \mathbf{2 5} \\ \hline\end{array}$	18	6	．－．．．．－	14	6	38
Ecarlet fever．	100	119	195	406	84	50	39	55		68		30	18
Diphtheria．	100	139	193	139	163	37	40	173	72	91			119
Croup．．．－－	100	267	287	239	135	135	28	20		${ }^{9}$			11
All respiratory diseases and disorders．．．．．－	100	136	132	126	111	97	87	87	81	76	81	81	93
Colds．．．－．－．－．．．．－－	100 100	155	148 109	$\begin{array}{r}143 \\ 98 \\ \hline\end{array}$	123 99	93 85	78 88	84 87	68 102	68 84	62 110	73 119	81 115
Tonsillitis and sore throat．．．．．．．．．．．．．．．．．．．．．．．．．．．	100	65	108	125	111	115	129	110	106	82	82	56	115
Other respiratory diseasos and disorders．．．	100	330	178	101	53	123	41	33	25	98	113	58	119
Digestive diseases and disorders．．．．．．．．．．－－	100	124	99	129	132	84	93	118	75	121	74	61	86
Toothache and diseases of the teeth．	100	121	80	102	115	125	94	83	126	97	108	71	90
Earache and ear diseases．－．．．．．．	100	301	181	154	120	71	105	39	58	65	20	22	74
Diseases and disorders of the eyes．	100	58	151	145	102	90	63	123	154	73	59	35	102
Headache and neuralgia－．．．．．．．．．．	100	53	71	97	123	112	118	129	111	94	88	76	113
Skin diseases and disorders．－	100	132 54	134	136	175	95	${ }_{86}^{60}$	110	100	71	8	43	96
Accidents，minor and major－．．．．．．．．．．．．．．．．．－	100 $-\quad 100$	54 265	98 280	79 91	124 130	83 112	86 122	130	108 19	118	114	64 17	149
Tonsil or adenoid operations．．．．．．．．．．．．．．．．．．．－	-100 -100	265	280	91	130	112	122	42 20	105	179	300	605	81
Other and unknown diseases and disorders．	100	162	103	95	99	100	83	104	95	116	71	76	114

n00000nn000 ベन
00000004000 15 ries ぶがべず

\qquad
$\frac{!}{\text { nnoonnonoono }}$

0nnownonmoon

Number of days' exposure	1,376, 910	77, 307	141, 139	147, 561	128, 627	123,825	121, 535	116, 136	109, 134	97, 497	77, 359	128, 745	108, 045
Number of full-time years.	7, 649. 50	429.48	784.11	819. 78	714.59	687.92	675.19	645.20	606.30	541.65	429.78	715.25	600.25

AGE INCIDENCE OF CERTAIN DISEASES.

The age of greatest incidence for the different diseases is of potential significance with regard to school progress. It is of interest, therefore, to inquire at what school ages the different diseases have the greatest incidence. In Tables 5 and 6 are shown the frequency rates and the days lost per child for each age for certain diseases.

The actual rates for the different diseases for all ages combined are shown graphically in Figure 2. These rates vary so greatly that it is practically impossible to plot the age curves on a single scale. Therefore, for the purpose of showing the relative age incidence, the rates were reduced to an index basis by dividing the rate at each age by the rate for all ages combined. These indices are given in the second sections of Tables 5 and 6 and indices of the case rates plotted in Figure 6.

The height of the curves of the indices in Figure 6 do not represent the size of the rates; but the extent of the deviation of the curve from the base (100) does represent the extent of the variation in the rates at different ages from the rate for all ages combined. If there were no variations whatever, the curve would be a straight line at 100. The curves are representative, therefore, of the relative age incidence of the diseases.

In some instances the curves are irregular, but in most cases they do indicate certain general tendencies. Dotted lines have been drawn in Figure 6 to indicate in a very general way the tendencies apparently shown by the actual rates.

When the respiratory affections are considered as a whole, the incidence rate falls regularly from 6 to 14 years of age, but rises somewhat at 15 and older ages. The respiratory affections constitute about half of the total cases of illness from all causes, and the curve for all causes is therefore very similar to the one for respiratory affections. Colds, which comprise the greater part of the respiratory disorders, show, with some slight exceptions, the same general tendencies as are shown by all respiratory diseases, but the decline with age is somewhat more rapid.

The rates for "grippe" and influenza form almost a straight line to 12 years of age, but show considerable rise after that age. It is difficult to judge by the relatively limited influenza curve for the Hagerstown school children whether it is similar to the characteristic age curve of influenza for the epidemic of 1918. That there is a difference from the 1918 morbidity curve seems to be indicated, inasmuch as the 1918 curve, for the ages 5 to 19 years (5-year age groups) shows a downward trend for both boys and girls, ${ }^{8}$ whereas

[^8]

Smcludes respiratory diseases other than colds, grippe and influenza, and toisillitis and sore throat.

Fia. 0.
the curve for influenza among the school children at Hagerstown for the period 1922-23 shows an upward trend. During this period practically all the influenza occurred in two epidemics which attained their peaks in March, 1922, and February, 1923, respectively.

The age curve for tonsillitis and sore throat is very different from the curves for the other respiratory diseases. It rises from 6 years of age to a maximum at 11 years, and declines to a point about equal to the 6 -year rate at 16 years of age.

The curve for headache shows a rising rate up to 12 years and then declines. The rates for the digestive diseases and toothache show some tendency to rise in the middle years of school life and then decline after approximately 10 years of age.

The accident cases are made up chiefly of minor injuries of the hands and feet such as commonly happen to school children at play. Few serious accidents were reported. The age curve for these minor injuries rises in the middle years of school life, reaching a maximum at about 12 years, and then declines.

None of the diseases mentioned above shows anything like as much variation as do the children's diseases (fig. 6). Measles, whooping cough, chicken pox, scarlet fever, diphtheria, and croup all have very much higher incidence at the younger than at the older ages considered in this study. The incidence of whooping cough is greatest at 6 years; of measles, chicken pox, and diphtheria is somewhat greater at 7 than at 6 years, but falls off rapidly after 7 years; croup is high at 6,7 , and 8 years and then rapidly declines. The incidence of scarlet fever seems to increase to a maximum at about 8 years and then markedly declines.

SEASONAL VARIATION IN THE INCIDENCE OF CERTAIN DISEASES.
In Table 7 are shown the frequency rates and the days lost per child by months for all causes and for certain diseases. These rates are reduced to the basis of a school year of 180 school days, the rate for any month representing the rate that would have resulted if absence had continued throughout the school year at the rate which occurred during the month. Inasmuch as the different months vary in length, the rates are reduced to this common basis in order to make the monthly rates comparable.
Table 7.-Seasonal variation in the morbidity from certain diseases and disorders: Case incidence and days lost by months among white school

DAYS LOST PER 1,000 CHILDREN PER SCHOOL YEAR OF 180 SCHOOL DAYS

${ }^{1}$ Including a few days of June.
Table 7.-Seasonal variation in the morbidity from certain diseases and disorders: Case incidence and days lost by months among white school children in Hagerstown, Md., December, 1921, to May, 1923, inclusive-Continued.

Diagnosis.	1921	1922					1922				1923				
	$\begin{gathered} \text { De- } \\ \text { cember. } \end{gathered}$	January.	February.	March.	April.	May. ${ }^{1}$	Sep-tember.	Octo- ber.	No-vember.	$\begin{gathered} \text { De- } \\ \text { cember. } \end{gathered}$	January.	February.	March.	April.	May. ${ }^{1}$
NUMBER OF CASES OF SICKNESS.															
All causes.	651	937	951	1,413	746	538	657	994	1,153	1,015	2,093	2,543	1,681	1,341	1,134
All respiratory diseases and disorders	353	583	522	851	306	146	152	340	${ }^{1} 404$	413	1,126	1,807	1,962	1488	, 394
All other causes.........................	298	354	428	562	440	392	505	654	749	602	, 987	${ }^{1} 736$	719	873	740
Measles.	4	1	15	31	31	76	1		1	1	59	57	38	69	20
Chicken pox....	$\stackrel{2}{6}$	10 5	5	10 9	3	${ }_{1} 1$	1.	2	10	10	13	11	6	7	15
Scarlet fever..	2	1	1			1		B	5	6	4		1	3	1
Diphtheria.	2			3				5	11	4	4			1	
Croup.....	8	13	8	7	6	1	3	3	6	13	19	17	9	6	9
Colds..	236	404	377	538	191	99	86	197	242	272	720	1,089	677	299	281
Grippe and influenza	6	23	30	160	24	5	6	12	18	23	- 170	562	144	34	9
Tonsillitis and sore throat	104	130	109	136	80	40	54	124	135	112		151	128	125	99
Other respiratory disenses and disorders	7	26	6	17	8	2	${ }^{6}$	7	9	6	20	25	13	10	5
Digestive diseases and disorders..	67	80	101	105	98	82	115	143	168	149	196	93	137	134	127
Headache and neuralgia...	75	88	112	140	102	82	124	151	180	144	238	193	186	253	188
All other diagnoses.	132	167	180	242	162	122	261	344	368	275	414	365	341	400	380
EXPOSURE.															
Number of children	3,643	3,672	3,669	3,657	3,613	3,372	5,117	5, 121	5,122	5,106	5,091		5,068	4,962	4,935
School days in month.				23		25	19				, 22		5,21	4, 20	
Total possible days of attendance	61,931	77,112	73,380	84, 111	65, 03 -	84,300	97, 223	97, 299	102,440	76,590	112,002	101,640	106, 428	99, 240	138, 180
Full-time years of exposure	344.06	423.40	407. 67	467.23	361.30	468.33	540. 13	540.55	${ }^{569.11}$	425. 50	622. 23	564.67	591.27	551.33	767.67

${ }^{1}$ Including a few days of June.

The number of days lost per child is based not on the days lost from cases arising in the given month but on the actual days lost from the given cause during the month regardless of the date of onset of the cases causing the absence. A close examination of the data indicates that the number of days lost from all causes combined and from certain causes, particularly colds and the respiratory affections, varies more than the case rates. This fact would indicate that colds were of a more severe type, as measured in duration per case, in

Fig. 7
some months than in others. A more detailed analysis of this phenomenon is rescrived for a later report.

In Figure 7 are shown the case rates for all causes combined and for two large classes, viz, the respiratory diseases and all other causes. The seasonal variation in the nonrespiratory diseases is slight but that in the respiratory diseases is very marked. The peak is in March in 1922 and in February in 1923.

The rates for certain specific diseases are shown on a very much larger scale in Figure 8. Colds have a very definite peak at the times influenza was most prevalent-March, 1922, and February, 1923. There seems to be no very definite connection between the prevalence of tonsillitis and influenza.

During the spring of 1922 the frequency rates for measles and whooping cough were about equal, except in May. During the winter of 1922-23 only two cases of whooping cough were reported,

Fig. 8
but the frequency of measles, on the other hand, was about equal to that of the preceding year.

Headaches and the digestive disorders do not show any marked seasonal variation.

SUMMARY.
Records of sickness were kept for a large proportion of the school children in Hagerstown, Md., for the last six months of the 1921-22 school year, and for the entire school year of 1922-23.

The case rates and the days lost per child for all causes of sickness combined and the number of school days lost per case of illness were computed for each year of age. In all instances the rates declined as the age increased. The number of days lost per child showed the most rapid and the case rate the least rapid decline.

The case rates and the number of days lost per child were consistently higher for girls than boys, but the days lost per case of illness was practically the same for each sex.

An analysis of the causes of sickness showed that colds were the most common causative factor, both in case frequency of illness and days lost per child. As measured in days lost per child, influenza and measles were next, but the case frequency of headache, the digestive disorders, and tonsillitis and sore throat, was greater than that for either influenza or measles.

The duration of a case of illness, as measured by school days lost per case, was computed for each disease. Whooping cough, scarlet fever, pneumonia, diphtheria, and measles head the list in the order named. Common colds, the digestive disorders, toothache, and headache, some of the most common causes of illness as measured by case frequency, are of minor importance from the standpoint of the number of days lost per case.

The incidence of the common diseases of children decreased rapidly with age. The rates for tonsillitis and sore throat, headache, and accidents increased up to 11 or 12 years and then declined. Common colds decreased until about 13 years of age, after which there was a slight increase. Toothache and the digestive disorders showed little tendency to vary with age, though possibly increasing slightly . up to about 10 years and then declining.

The variation in the rates for the different months was large for the respiratory affections but not nearly so marked for the nonrespiratory conditions. The highest rates obtained during March in 1922 and during February in 1923. They were clearly associated with the epidemics of colds and influenza which occurred during those months.

Appendix.

The following tables show in greater detail the data used in this study. Table 8 shows rates for all causes by age, and Table 9 shows rates for all ages by cause for each of the two school years separately.

Tables 10 and 11 show cases and absences separately for the school year 1922-23. Table 12 shows certain rates and percentages that may be used for comparison with other studies in which the rates are calculated on a basis different from that adopted for this study.
Table 8.-Morbidity from all causes by age in the two school years, December, 1921, to May, 1922, and September, 1922, to May, 1923-

School year.	All ages.	Age nearest birthday.											
		6 and under.	7	8	9	10	11	12	13	14	15	16 and over:	$\begin{aligned} & \text { Unkrown } \\ & \text { agc. } \end{aligned}$
Cases per 1,000 Child den per school year of 180 School days.													
1921-22....	$\underset{\substack{2,114 \\ 2,438}}{ }$	$\underset{\substack{2,866 \\ 2,835}}{ }$	2,470 2,954	2,153 3,033	2,436 $2,59$. $2,50$.	$\underset{\substack{2.016 \\ 2,43}}{\text { 20, }}$	1,893 2,201	1,991 2,417	1.734 2,250	1,687 2,254	1,829 1,919	- $\begin{aligned} & \text { 1.7. } \\ & \text { 2. } 101\end{aligned}$	(2.652

SCHOOL DAYS LOST PER 1,000 CHILDREN PER SC'HOOL YEAR OF 180 SCHOOL DAYS.

1921-22	7,455 7,218	14,393 11,513	12,657 11,000	9,980 9,749	8,257 8,055	5. 730 6,816	5. 5, 069 , 948	5, 543 6,281	4,031 5,825	4,476 5,751	4,198 4,908	3,810 4,955	10,178 5,855
SCHOOL DAYS LOST PER CASE OF SICKNESS.													
1921-22	3.53	5. 02	5. 12	4. 64	3.39	2.85	2. 68	2. 78	2.32	2.65	2.29	2.14	3.84
1922-23	2.96	4.06	3. ${ }^{2} 2$	3.21	3.11	2.78	2.64	2. 57	2. 58	2. 55	2. 56	2. 36	2.92

NUMBER OF CASES OF SICKNESS.

c
NUMBER OF DAYS LOBT FROM SICKNESS.
18.467 .0
$2,499.5$
$37,333.0$

NUMBER OF INDIVIDUAL CHILDREN.

1921-22	3,712 5,126	256 252	417 491	433 517	343 477	357 442	338 446	313 434	265 426	257 366	235 276	367 475	131 524
NUMBER OF DAYS OF EXPOSURE.													
1921-22	445, 868	31, 147	51, 084	52,829	41,823	43, 314	40,325	37,651	31,862	31,048	27, 552	42,572	14,661
1922-23	931, 042	46,160	90, 055	94,732	86, 804	80,511	81, 210	78,485	77, 272	66,449	49,807	86, 173	93, 384

NUMBER OF FULL-TIME SCHOOL YEARS OF EXPOSURE.

1921-22.	2, 477. 04	173.04	283.80 500.31	293. 49	232.35	240.63	224.03	209. 17	177.01	172.49	153.07	236.51	81.45
1922-23.	5,172.46			526. 29	482.24				429.29	369.16		478.74	518.80

Table 9.-Morbidity from certain causes among white school children of both sexes and all ages in the two school sessions, December, 1921, to May, 1922, and September, 1922, to May, 1923, in Hagerstown, Md.

Diagnosis.	Cases per 1,000 children per school year of 180 school days.		School days lost per 1,000 children per school year of 180 school days.		$\begin{aligned} & \text { School days } \\ & \text { lost per } \\ & \text { case of } \\ & \text { sickness. } \end{aligned}$		Number of cases of sickness.		Number of days lost from sickness.	
	${ }_{22}^{1921-}$	$\begin{gathered} 1922- \\ 23 \end{gathered}$	${ }_{22}^{1921-}$	$\underset{23}{1922-}$	${ }_{22}^{1921-}$	$\stackrel{1922-}{23}$	${ }_{22}^{1921-}$	$\underset{23}{1922-}$	- 1921-22	$\stackrel{1922-}{23}$
All causes.	2,114	2, 438	7, 455	7, 218	3. 53	2.96	5,236	12, 611	18,467.0	7,333.0
Measles.	64	48	798	570	12.51	11.98	158	246	1,976.0	2,946.0
Mumps.	1	1	6	6	8.00	4.71	2	7	16.0	33.0
Whooping cough	42		1,039	14	24.99	35. 50	103	2	2,574.0	71.0
Chicken pox	11	14	91	124	8.04	8.69	28	74	225.0	643.0
Scarlet fever	2	5	24	130	11.80	25.88	5	26	59.0	673.0
Diphtheria	2	5	38	81	18. 80	16. 84	5	25	94.0	421.0
Croup.	17	16	44	47	2.56	2.87	43	85	110.0	244.0
Colds.	746	743	1,874	1,853	2.51	2.49	1,848	3,843	4,642.0	9,583.0
Grippe and influenza	100	189	502	1,179	5. 02	6. 23	248.	${ }^{1} 978$	1,244.0	6, 096.0
Tonsilitis and sore throat.-	242	221	676	601	2.79	2.72	599	1,144	1,674.0	3, 110.5
Bronchitis and cough.	16	9	79	59	5.03	6.28	39	49	196.0	307.5
Pneumonia ------	8	4	138	90	18.00	21.09	19	22	342.0	464.0
Other respiratory diseases and disorders.	3	6	37	18	11.50	3.05	8	30	92.0	91.5
Digestive diseases and disorders	219	244	416	460	1.90	1.88	542	1,262	1,030.0	2,377.0
Tce thache and diseases of the tecth.	83	129	145	193	1.64	1. 50	219	667	359.5	1,000. 5
Earache and ear diseases...	44	53	113	134	2. 59	2.55	108	273	280.0	695.0
Discases o the eyes.....	58	35	198	98	3.41	2.79	144	182	491.0	507.0
Head.echefand neuralgia.	234	324	303	364	1.30	1.12	579	1,677	750.5	1,885. 0
Scabies..	7	$\stackrel{2}{4}$	76	20	11.06	13. 25	17	8	188.0	106. 0
Pediculcsis	8	4	70	40	9.08	10.35	19	20	172.5	207.0
Other skin diseases	15	33	71	139	4.66	4.23	38	170	177.0	719.0
Accidents, minor and major.-...................	45	89	131	253	2.92	2.84	111	461	324.0	1,308. 0
Tonsil or adenoid operations.	12	7	127	66	10.86	10.06	29	34	315.0	342.0
Menstruation...	16	17	20	19	1.21	1.11	40	89	48.5	98.5
Other diseases and disorders.	67	70	327	260	4. 88	3.71	166	362	810.0	1,344.0
Unknown diagnosis.	48	169	112	398	2.33	2.35	119	875	277.0	2,060. 5
-									1921-22	1922-23
Number of individual childre Number of days of exposure									3,712	5,378
									445, 868	931, 042

Table 10.-Excess of absences over cases of illness from certain diagnoses, days lost per case and days lost per absence-white sch jo! children of both sexes and all ages in Hagerstown, Md., September, 1922, to May, 1923, inclusive.

Table 11.-Excess of absences over cases of illness from all causes, days lost per case, and days lost per absence, by age-white school children of both sexes in Hagerstown, Md., September, 1922, to May, 1923, inclusive.

	$\begin{gathered} \text { All } \\ \text { ages. } \end{gathered}$	Age nearest birthday.											
		$\left\lvert\, \begin{gathered} 6 \text { and } \\ \text { un- } \\ \text { der. } \end{gathered}\right.$	7	8	9	10	11	12	13	14	15	$\begin{gathered} 16 \\ \text { and } \\ \text { over. } \end{gathered}$	Unknown age.
Number of cases.--	12, 611	727	1,478	1,599	1,250	1,095	1.017	1,0¢7	970	832	531	1,006	1,039
Number of ab- sences		763	1,569	1,707	1,330	1, 144	1,051	1,128	1,018	861	556	1,057	1,085
Excess oi absences over cases.		36		108		49		61			25	51	46
Percentage of excess to number of cases. \qquad	5.2	5.0	6.2	6.8	6.4	4.5	3.3	5.7	4.9	3.5	4.7	5.1	4.4
School days lost per case	2.96	4.06	3.72	3.21	3.11	278	2. 64	2.57	2.58	2.55	2. 56	2.36	2.92
School days lost per absence.	2.81	3.87	3.51	3.01	2.92	2.66	2. 25	2.43	2.46	2.47	2.44	2.24	2.80

Table 12.-Morbidity case and severity rates from certain causes per 10,000 days errolled and the percentage of cases and of days lost due to each diagnosis-white school children of both sexes and all ages in Hagerstown, Md., December, 1921, to May, 1923, inclusive.

Diagnosis.	Cases per 10,000 days enrolled.		School days lost per 10,000 days enrolled.				Number of cases.		Number of days lost.	
	$\begin{aligned} & \text { ய్ర } \\ & \text { Z } \\ & \text { Z } \end{aligned}$						$\begin{aligned} & \text { ジ } \\ & \ddot{Z} \\ & \text { § } \\ & \text { Z } \end{aligned}$		$\begin{aligned} & \text { ఖ్ర } \\ & \text { Z } \\ & \text { E } \end{aligned}$	
All causes.	129.6	69.6	405.3	354.0	100.0	100.0	17, 847	9, 582	55,800. 0	48,748.0
Measles.	2.9	2.9	35.7	35. 7	2.3	8.8	404	403	4,922. 0	4,921. 0
Mumps	. 1	. 1	. 4	. 3.	. 1	. 1	9	8	49.0	48.0
Whooping cou	. 8	. 8	19.2	19.2	. 6	4.7	105	105	2,615. 0	2,645. 0
Chicken pox.	. 7	. 7	6.3	6. 3	. 6	1. 6	102	101	868.0	867.0
Scarlet fever	. 2	. 2	5.3	5. 3	. 2	1.3	31	31	732.0	732.0
Diphtheria.	. 2	. 2	3.7	3. 7	. 2	. 9	30	30	515.0	515.0
Croup	. 9	. 5	2.6	2.2	. 7	. 6	128	74	354. 0	306.0
Colds	41.3	23.3	103.3	86.9	31.9	25. 5	5,691	3,207	14,225. 0	11,972. 0
Grippe and influenza	8.9	8.6	53.3	53.0	6.9	13.2	1,226	1,186	7,340. 0	7,302. 0
Tonsillitis and sore throat	12.7	7.9	34.7	30.4	9.8	8.6	1,743	1,090	4,784. 5	4,192. 0
Bronchitis and cough 6	. 5	3.7	3. 6	. 5	. 9	88	75	503.5	4920
Pneumonia.-.-.-.-.	.3	. 3	5.9	5.9	. 2	1.4	41	41	806.0	806.0
Other respiratory diseases and disorders.	. 3	. 2	1.3	1. 3	. 2	. 3	38	26	183.5	173.5
Digestive diseases and disorders.	13.1	5.0	24.7	18.0	10.1	6.1	1,804	693	3,407. 0	2,483.0
Tcothache and diseases of the tecth.	6.4	2.0	9.9	6. 3	5. 0	2.4	886	280	1,360. 0	869.0
Earache and ear diseases...-	2.8	1.4	7.1	5.8	2.1	1.7	381	187	975.0	803.0
Diseases and disorders of the cyes.	2.4	1.5	7.2	6.5	1.8	1.8	326	211	998.0	900.0
Headache and neuralgia	16.4	3.4	19.1	9.0	12.6	4.7	2, 256	463	2,635. 5	1,237. 5
Scahies	. 2	. 2	2.1	2.1	. 1	. 5	25	24	294.0	293.0
Pediculosis.	. 3	.3	2.8	2.7	. 2	. 7	39	36	379.5	377.0
Other skin diseases and disorders. \qquad	1.5	1.0	6.5	6.1	1. 2	1. 6	208	142	896.0	835.5
Accidents, minor and major.	4. 2	2.3	11.9	10.2	3.2	2.9	572	311	1,632. 0	1, 409.5
Tonsil or acen id operations.	. 5	. 4	4.8	4.8	. 4	1.2	63	61	657.0	655.0
Menstruation..--.-.-.-.-.--	. 9	. 2	1.1	. 4	. 7	. 3	129	27	147.0	68.0
Other diseases and disorders.	3.8	2.3	15.6	14.3	3.0	3.9	528	317	2,154. 0	1,973. 0
Unknown diagnosis .-......--	7.2	3.3	17.0	13.6	5.6	4. 2	994	453	2,337. 5	1,873. 0

A STUDY OF RAGWEED POLLEN EXTRACTS FOR USE IN THE TREATMENT OF RAGWEED POLLEN HYPERSENSITIVENESS.

By Charles Armstrong, Bassed Assistant Surgeon, and W. T. Harrison, Passed Assistant Surgeon, United States Public Health Service.
Numerous authors have reported gratifying results in the treatment of hay fever by means of repeated hypodermic injection of extracts made from the specific pollen to which the patient is sensitive. Pollen extracts are, however, prepared in many different ways. Different methods of collecting and cleaning the pollen granules result in variations in the degree of maturity and purity of the stock pollen from which the extracts are prepared. Various extractives and preservatives are employed, many different methods of extraction are used, and the time employed in the extraction varies. Some experimenters have attempted by various means to purify and concentrate the extracts. As a result of this lack of uniformity in the preparation of extracts from any given pollen, a considerable variation in potency, keeping qualities, etc., may be expected.

The work herein reported was carried out with the pollen of ragweed (Ambrosia elatior and Ambrosia trifida), since ragweed is the commonest cause of hay fever in the eastern portion of the United States; and it was undertaken in an effort to select from a large number of variously prepared pollen extracts one which would possess the qualities of an extract suitable for use in treatment. Uniformity of strength in different batches of extract, a high degree of specificity and potency, good keeping qualities, and a tendency to inhibit bacterial growth are among the qualities deemed desirable in such an extract.

METHODS.

Clock (1), in 1918, demonstrated that rabbits could be immunized with an extract of ragweed pollen and thus bring about the production of antibodies capable of fixing complement. The work herein reported represents a further application of this method to the study of ragweed pollen extracts.

PROCEDURE.

Immunization of rabbits.-Adult rabbits were injected intraperitoneally on alternate days, for a period of about three weeks, with increasing amounts of ragweed pollen extract (5 to 50,000 units ${ }^{1}$). The animals were bled on the seventh day.

Complement fixation-Titration of antigen.-Immune rabbit serum was employed in 0.011 c. c. amounts. Antigen (pollen extract) was used in amounts of from 5 to 100 pollen units. Two units of antisheep amboceptor ${ }^{2}$ were used. Guinea pig complement titrated in the presence of an average dose of antigen was utilized in 2 -unit ${ }^{3}$ amounts. Sheep cells were used as an indicator (0.2 c. c. of 1.2 per cent suspension of packed cells). The total volume of fluid in each tube was $1.1 \mathrm{c} . \mathrm{c}$.

Fixation was carried out at an ice-box temperature of from 5 to $8^{\circ} \mathrm{C}$. for 18 hours.

This test gave clean-cut results and was highly delicate, with a potent antigen and antiserum fixation of complement occurring with as little as 5 to 10 units of the extract.

POLLEN A COMPLEX ANTIGENIC SUBSTANCE.

When the structure and physiology of a pollen granule are considered, it seems probable that it would contain more than a single

[^9]antigenic principle, and this appears to be indicated from the following observations:

Two rabbits, No. 1 and No. 2, were immunized in the same manner at the same time and with the same ragweed pollen extract which we will designate as extract "A."

Antisera from rabbits No. 2 and No. 3, when tested against extract "A," were found to be of equal strength, each fixing complement in the presence of a minimal dose of 20 units of the extract.

When, however, extract " B," prepared in a slightly different manner, was substituted for extract "A," antiserum from rabbit No. 2 fixed complement in the presence of 10 units of antigen " D," whereas antiserum from rabbit No. 3 failed to fix complement in the presence of antigen " D ' used in doses ranging from 5 to 100 pollen units. This observation was repeatedly checked and proved constant for these antisera and extracts. The explanation of this phenomenon would seem to be that the two rabbits had produced their predominating antibodies against slightly different fractions of the antigen, and that extracts " A " and " D " contained these antigenic fractions in different proportions.

Moreover, when a series of extracts was prepared from equal quantities of pollen by using various extractives, and was tested for complement binding power against a single antiserum, quantitative variations were common. Some extracts gave strong and others weak binding of complement, while in still others this property of the extract, present at first, was soon entirely lost. Again, mainly in extracts in which an effort was made at concentration or purification, the complement-binding properties were entirely absent.

It was found, moreover, that when an extract containing 10,000 umits per c. c. in 2 parts glycerine and 1 part Coca's fluid, ${ }^{4}$ was diluted fifty times with saline, and heated to $65^{\circ} \mathrm{C}$. for 30 minutes, it lost entirely its complement-binding power for its original antiserum. This heated extract was still capable, however, of producing an antiserum in rabbits which was specific for itself. The complementfixing bodies were considerably more resistant to the action of heat when the latter was applied to the undiluted glycerinated extract.

COMPLEMENT-FEXING PROPERTIES OF FARIOUS COMMERCIAL EXTRACTS.

In view of the quantitative and qualitative variations noted in the complement binding power of various experimental extracts, it was deemed desirable to test these properties in commercial products. For this purpose several commercial extracts prepared from short ragweed pollen were secured and used for the immunization of rabbits. With the antisera thus produced and with the various extracts, cross tests were made. The results are shown in Table 1.

[^10]Table 1.-Cross complement fixation with short ragweed pollen extracts and antisera.
[Figures indicate binding with minimum number of units noted. Minus sign indicates no binding.]

Rabbit antiset um produced against extract.			No. 6. Commercial.	No. 5. Commercial.					
	Units.								
No. 1. Commercial.		-							
No. 1. Commercial (second rabbit)	-	${ }^{1} 100$	-	-				-	
No. 3. Commercial	-		-		二	-		-	
No. 3. Commercial (second rabbit)	-	-	-	-	-	-	-	-	
No. 4. Commercial --..-.-.-.--	-	-	-	-	-	-	-	-	
No. 4. Commercial (second rabbit)	-	-	-	-	-	-	-	-	
No. 7. Experimental extract	-	10	$1 \overline{100}$				$\overline{20}$		
No. 8. Experimental extract (same as No. 7 except heated to 65° for 30 minutes)	60	-	-		-	-	-	-	

${ }^{1}$ Partial.

It may be noted in Table 1 that the commercial extracts which were used failed, with one exception, to produce antibodies in rabbits. The same dosage, measured in units, was used in each case and the methods of immunization were identical. This method uniformly gave potent antisera in a considerable number of animals immunized with extracts Nos. 2, 7, and 8 of Table 1. The character of the extract probably accounts for the failure of Cook, Flood, and Coca (3) in their attempts to produce complement-fixing antibodies in rabbits in 1917.

Extract No. 7, Table 1, was selected for further study on account of its strength and polyvalency when tested with antisera produced against a large number of experimental extracts and on account of its potency in producing dermal reactions in sensitive individuals. A dose of one thirty-two hundredth of a unit of this extract gave a definite intra-dermal reaction in sensitive cases.

This extract was prepared by extracting ripe, dry, pollen granules in a mixture of 2 parts glycerin ${ }^{5}$ and 1 part Coca's fluid, a combination suggested by Dr. H. S. Bernton. ${ }^{6}$

Preparation of the extract.-The mature pollen granules were collected by placing the flowering plants in pails of water in a still room, with the blossoms projecting over waxed paper. The pollen was prepared for extraction by passing through a $200-\mathrm{mesh}$ sieve, followed by drying over sulphuric acid. If not used at once, the

[^11]pollen was weighed, and sealed in glass ampules under reduced pressure. Extraction was allowed. to continue for eight days at room temperature, ${ }^{7}$ with occasional shaking. The extract was then filtered, and, if sterile, was considered ready for use.

Grinding of the pollen in a mortar with quartz sand, etc., uniformly resulted in a loss of complement-binding power in the ex-tract-probably due to the fact that the foreign material removed portions of the antigenic fraction by absorption.

EXTRACTS PREPARED WITH NASAL SECRETIONS.

In view of the quantitative and qualitative variations noted in differently prepared extracts it was felt that the use of strong chemicals and rough manipulations in the preparation of extracts should be reduced to a minimum. In other words, it was felt that an extract for specific treatment should imitate the extract secured by the patient when pollen granules gain access to his nasal mucous membranes. In order that we might study this extract, a quantity of nasal secretion collected from several patients during hay fever attacks was secured, promptly pooled, and ripe pollen added.

In order to imitate natural conditions, the extraction was terminated after 15 minutes, the material was passed through a Berkefeld filter, and 50 per cent glycerin was added as a preservative. This extract was then tested against antisera produced by the injection of various pollen extracts into rabbits. It was found that the extract was strongly antigenic for certain antisera but gave no binding with others. The antisera produced against the Coca's fluid and glycerin extract bound complement with this nasalsecretion in 10 unit amounts.
antibodies in the sera of patients sensitive to ragweed pollens.
Clowes (5), Walker (6), and others have reported the occasional finding of complement-binding antibodies in the sera of hay fever and asthma patients, and it was felt that perhaps the character of the antigen was the reason for the usually negative results.

Tests were made with the above-described glycerin-Coca's fluid antigen-since it seemed similar to the nasal-secretion extract and also with other extracts, including a suspension of the whole pollen. A total of 70 patients were teated, some before and some after treatment, using varying amounts of serum and antigen and employing both native and guinea-pig complement. The results were uniformly negative. That there was nothing in the human sera which prevented fixation is indicated by the fact that with rabbit antisera fixation took place readily in the presence of human serum. We were also unable to demonstrate complement-fixing antibodies in guinea pigs tested at varying intervals following intraperitoneal injections of extract.

[^12]
KEEPING QUALITIES.

Since the glycerinated extract was highly potent and seemed similar to that causing hay fever in nature, it was felt that it should be a suitable extract for treatment, provided its keeping qualities were good.

Bottles of concentrated extract allowed to stand at room temperature showed no appreciable loss of complement-fixing power after 144 days.

Tests were also made of the keeping qualities of the extract in dilution (100 units per c. c. in 0.85 per cent saline) and at varying hydrogen ion concentrations of from pH 9.2 to 5.8 when left at icebox temperature. Slight deterioration was first noted after 114 days. Buffered solutions were not employed, and the pH values varied somewhat. However, the evidence seemed conclusive that the antigen tended to be very stabile in dilution and that the hydrogen ion concentration in the range tested exerted no marked influence upon the keeping qualities.

The results of treatment likewise indicate the stability of the glycerinated extract, since, when a dilution used for some days in the treatment of a patient is replaced by a new dilution, the transfer is without reactions, thus indicating a uniform strength of the two preparations. (The results of treatment with this extract will be reported later.)

COMPLEMENT-FIXING ANTIBODIES RELATIVELY LABILE.

That the complement-fixing antibodies are a sensitive criterion of the keeping quality of an extract is indicated by the fact that change in the property of complement fixation is one of the first alterations in an extract to become apparent, since an extract may lose this property naturally or have it destroyed by heating without apparent loss in its power to produce skin reactions in sensitive individuals.

RELATIONSHIP OF SHORT AND GIANT RAGWEED POLLEN EXTRACTS
The writers, in a previous paper (4), have shown that giant and short ragweed extracts behave qualitatively quite similarly toward the sensitized guinea pig. It is possible, however, to distinguish the two by the use of cross fixation tests using several sera, binding being more pronounced with the homologous sera and antigen.

Table 2.-Cross fixation using giant and short ragweed extract against short and giant ragweed antisera.

Pollen extract.	Rabbit antisera.					
	Antishort, rabbit sera No. 2.	Antishort, rabbit Ne. 5.	Antishort, rabbit sera No. 10.	Antigiant, rabbit sera No. 16.	Antigiant, rabbit sera No. 18.	Antigiant, rabbit sera No. 21.
	1050	1040	(1) 40	6010	(Partial.)	(Partial.)10010
Short.					100	
Giant..					10	

${ }^{2}$ Not in 100.

value of the complement-fixing properties of pollen extracts IN TREATMENT.

We do not wish to imply that the complement-fixing body has any value in the actual treatment of hay fever cases (this phase of the question will be reported upon later); but we feel that it does offer a method for the study of extracts as regards their specificity and keeping qualities.

SUMMARY.

1. Complement fixation offers a method for studying the specificity and keeping qualities of pollen extracts.
2. An extract of mature ragweed pollen in glycerine 2 parts, Coca's fluid 1 part, gives a stabile, potent, specific, bacteria-resisting extract.
3. This extract can be kept for long periods of time without apparent deterioration.
4. No antibodies were demonstrated in the sera of sensitive patients either before or after prophylactic treatment.
5. Short and giant ragweed pollen extracts tested with their respective antisera give cross fixation, but can be distinguished from each other by the relative strength of the reactions.

ACKNOWLEDGMENTS.

The writers are indebted to Dr. H. S. Bernton for his assistance in collecting blood samples and in supplying a number of variously prepared extracts for testing.

REFERENCES.

(1) Clock, R. O., jr.: Inf. Dis., 1918, 22: 80-82.
(2) Noon, L.: The Lancet, 1911, 180: 1572.
(3) Cook, Flood and Coca: Jour. Immunology, 1917, $2: 217$.
(4) Harrison and Armstrong: Pub. Health Rpts., 1924, 39: 1261.
(5) Clowes: Soc. Exp. Biology and Med., Proceedings of 1913, 10: 69-70.
(6) Walker: Jour. Med. Res., 1917, 36: 243-246.

DEATHS DURING WEEK ENDED SEPTEMBER 6, 1924.

Summary of information received by telegraph from industrial insurance companies for week ended September 6, 1924, and corresponging week of 1923. (From the Weekly Health Index September 9, 1924, issued by the Bureau of the Census Department of Commerce.)

Corresponding week, 1923.
53, 319, 916
Policies in force September 6, 1924.

Death claims per 1,000 policies in force, annual rate.
6. 8
7.5

Deaths from all causes in certain large cities of the United States during the week ended September 6, 1924, infant mortality, annual death rate, and comparison with corresponding week of 1923. (From the Weekly Health Index, September 9, 1924, issued by the Bureau of the Census, Department of Commerce.)

City.	Week ended Sept.$\text { 6, } 1924 .$		Annual death rate per 1,000 corresponding week, 1923.	Deaths under 1 year.		Infant mortality rate, week, ended Sept. 6, 1924. ${ }^{\circ}$
	Total deaths.	Death rate. ${ }^{1}$		$\begin{gathered} \text { Week } \\ \text { ended } \\ \text { Sept.6, } \\ \text { 1924. } \end{gathered}$	$\begin{gathered} \text { Corre: } \\ \text { sponding } \\ \text { week, } \\ 1923 . \end{gathered}$	
Total (65 cities).	5,669	10.9	${ }^{3} 10.5$	823	3843	
Akron.	26			4	6	42
Albany ${ }^{\text {a }}$	25	11.0	15.1	3	4	68
Atlanta-..-	60 176	13.7 11.7	17.3 14.2	11 30	5 34	
Baltimore	176 45	11.7 11.7	14.2 16.5	110 8	34 10	89
Boston.....-	164	11.0	9.3	23	19	64
Bridgeport	23			4	3	64
Bufialo.	140	13.4	11.6	22	22	93
Cambridge	25	11.6	11.2	3	5	52
Camden.	29	12.0	12.6	4	9	66
Chicago ${ }^{4}$	522	9.3	9.2	86	94	80
Cincinnati	87	11.1	14.2	11	16	69
Cleveland	163	9.3	9.9	33	33	84
Columbus.	49	9.6	14.8	5	12	47
Dallas..	35	9. 7	6.9	3	2	
Dayton.	21	6.5	9.8	5	5	84
Denver ${ }^{\text {Des }}$ Moin	77			16	11	
Detroit...	$\stackrel{36}{ }$	12.9	9.6	0	2	0
Duluth.	14	6.7	4.4	1	1	22
Erie-	19			2	2	41
Fall River ${ }^{\text {4 }}$	23	9.9	12.9	5	11	70
Flint	15			3	5	52
Fort Worth.	17	6.0	6.9	2	4	
Grand Rapids	23	8.1	9.3	1	3	16
Houston-1--	33			3	3	
Indianapolis	88	13.1	10.8	16	15	118
Jacksonville, Fla	32	16. 3	11.5	3	0	
Jersey City .-	82	13. 7	8.3	14	12	100
Kansas City, Kans	28	12.4	10.4	2	2	39
Kansas City, Mo	62	9.0	10.8	8	7	
Los Angeles....-	175			21	23	66
Louisville........	65	13.1	17.2	13	10	122
Lowell .	25	11.3	13.1	5	6	89
Lynn	16	8.0	8.1	2	3	51
Memphis.	90	27.2	11.3	19	5	
Milwaukee.	71	7.5	9.8	6	16	28
Minneapolis	67	8.4	10.3	9	7	48
Nashville ${ }^{\text {t }}$ -	46	19.4	17.0	7	3	
New Bedford	19	7.5	11.2	5	5	78
New Haven.	32	9.5	10.6	4	3	53
New Orleans.	133	16.9	16.0	16	13	
New York	1,246	10.8	9.2	157	180	64
Bronx Borough	135	8.1	8.3	8	20	28
Brooklyn Borough	426	10.1	8.6	69	69	73
Manhattan Borough.	547	12.6	10.4	66	75	67
Queens Borough..--	95	8.9	7. 7	9	11	45
Rewark, N. J...........	43	17.2	12.7	5	5	91
Norfolk, .-. .-	32	10.2	8.5	5	4	889
Oakland.	35	7.4	8.5	1	4	13
Oklahoma City	21	10.5		3		
Omaha.	37	9.3	11.7	7	9	75
Paterson-	31	11.5	6.4	7	4	119
Philadelphia	424	11.3	10.4	74	60	94
Pittsburgh	147	12.2	13.4	23	24	78
Portland, Oreg	46	8.6	10.3	8	2	83
Providence	55	11.8	11.4	13	10	106
Richmond	67	19.0	13.8	13	7	158
Rochester.	70	11.2		11		87
St. Louis.	159	10.2	9.9 9	10	15	
Salt Lake City	40 28	8.5 11.4	9.9 10.3	6 1	8	51 20

${ }^{1}$ Annual rate per 1,000 population.
${ }^{2}$ Deaths unler 1 year per 1,000 births-an annull rate based on deaths under 1 year for the week and estimated births for 1923 . Cities left blank are not in the registration area for births.
${ }^{2}$ Data for 63 citics.

- Deaths for week ended Friday, September 5, 1924.

Deaths from all causes in certain large cities of the United States during the week ended September 6, 1924, infant mortality, annual death rate, and comparison with corresponding week of 1923. (From the Weekly Health Index, September 9, 1924, issued by the Bureau of the Census, Department of Commerce.)-Continued.

City.	Week ended Sept.$6,1924 \text {. }$		Annual death rate per 1,000 corresponding week, 1923.	Deaths under 1 year.		Infant mortal- ity rate, week ended Sept. 6, 1924.
	Total deaths.	Death rate.		Week ended Sept. 6, 1924.	$\begin{gathered} \text { Corre- } \\ \text { sponding } \\ \text { week, } \\ 1923 . \end{gathered}$	
San Antonio.	31	8.4	14.1	5	11	
San Francisco.	136	12.9	11.9	8	10	48
Schenectady	14	7.3	8.4	2	3	59
Seattle	51			2	6	20
Somerville.	19	9.9	10.0	1	4	27
Spokane---	23			0	1	0
Springfield, Mass	27	9.5	10. 1	6	4	101
Syracuse........-.	32	8.9	10.7	2	6	25
Tacoma....	${ }_{62}$	16.2	7.7	5	2	120
Trenton...	62 29	11.7 11.7	8.5 9.8	5	10	47
Utica.-...	16	7.9	12.6	0	5	8
Washington, D.C	107	11.5	11.5	18	21	104
Waterbury--.	12			4	4	93
Wimington, Del	37	16.1	7.1	5	2	112
Worcester...	43	11.5	12.2	8	5	96
Yonkers...-	$\stackrel{24}{14}$	11.4	7.3	6	${ }^{5}$	131
Youngstown.	14	4.7	13.9	4	12	55

PREVALENCE OF DISEASE.

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring.

UNITED STATES.

CURRENT WEEKLY STATE REPORTS.

These reports are preliminary, and the figures are subject to change when later returns are received by
the State health officers.
Reports for Week Ended September 13, 1924.

georgia-continued.

LOUISIANA-continued.

Pneumonia 2Cases.Scarlet feverSeptic sore throat4
Smallpox 21
panpox Tetanus. 1
Trachoma 1
Trichinosis 1
Tuberculosis 7
Typhoid fever 21
Whooping cough 4
ILLINOIS.
Cerebrospinal meningitis-Cook County 1
Diphtheria:
Cook County 43
Scattering 36
Influenza 3
Lethargic encephalitis-Macon County 1
Measles 19
Pneumonia 78
Poliomyelitis:Cook County5
Henry County 1
Johnson County 1
Kane County 1
Kendall County 1
Ogle County 1
Richland County 1
Whiteside County 1
Scarlet fever:
Cook County 25
Vermilion County 8
Scattering 29
Smallpox 4
Tuberculosis 241
Typhoid fever:
Cook County 12
Montgomery County 15
Scattering 32
Whooping cough 139
IOWA. 6Diphtheria
Poliomyelitis-Clinton 19
Scarlet fever 20
Smallpox 5
Typhoid fever 1KANSAS.Cerebrospinal meningitis1
Chicken pox 1
Diph theria 19
Measles 4
Mumps 18
Pellagra 1
Pneumonia 6
Poliomyelitis 1
Scarlet fever 35
Septic sore throat 1
Tuberculosis 20
Typhoid fever 18
Vincent's angina 1
Whooping cough 14
LOUISIANA.
Cerebrospinal meningitis 1
Diphtheria 13
Hookworm disease
Cases. 4
Leprosy
Malaria 15
Pneumonia 21
Scarlet fever 2
Smallpox 4
Tuberculosis 33
Typhoid fever 6
Chicken pox 5
Diphtheria 5
German measles 1
Influenza 4
Mumps 2
Poliomyelitis 2
Scarlet fever 11
Tuberculosis 12
Typhoid fever 6
Whooping cough 4
Chicken pox 1
Diphtheria 22
Dysentery 6
German measles 1
Influenza. 13
Lethargic encephalitis 2
Malaria 1
Measles 5
Mumps 7
Pneumonia (all forms) 15
Poliomyelitis 18
Scarlet fever 7
Septic sore throat 2
Tetanus. 2
Tuberculosis 59
Typhoid fever 53
Whooping cough 41
MASSACEUSETTS.
Cerebrospinal meningitis 9
Chicken pox 22
Conjunctivitis (suppurative) 12
Diphtheria 47
Lethargic encephalitis 2
Measles 23
Mumps 19
Ophthalmia neonatorum 25
Pneumonia (lobar) 26
Poliomyelitis 34
Scarlet fever 76
Septic sore throat 2
Tetanus. 1
Tuberculosis (all forms) 142
Typhoid fever 12
Whooping cough 53
Diphtheria 74
Measles 16
Pneumonia 24
Scarlet fever 69
Smallpox 11
Tuberčulosis 27
Typhoid fever 17
Whooping cough 98
montana.

NEW Jersey.

Cerebrospinal meningitis 4
Chicken pox 13
Diphtheria 49
Influenza 5
Malaria 2
Measles 14
Pneumonia 37
Poliomyelitis 4
Scarlet fever 26
Smallpox 3
Trachoma 1
Typhoid fever 15
Whooping cough 149
NEW Mexico.
Anthrax 4
Diphtheria 13
Dysentry 1
Measles 5
Mumps 3
Paratyphoid fever 1
Scarlet fever 5
Tuberculosis 15
Typhoid fever 21
Vincent's angina 2
Whooping cough 200
NEW YORE.
Diphtheria 49
Influenza 3
Lethargic encephalitis 2
Measles 37
Pneumonia 48
Poliomyelitis 51
Scarlet fever 60
Smallpox 3
Typhoid fever 39
Whooping cough 177
north carolina.
Cerebrospinal meningitis 1
Chicken pox 5
Diphtheria 184
German measles 1
Measles 31
Poliomyelitis 1
Scarlet fever 36
Septic sore throat 3Cases.
Smallpox 13
Typhoid fever. 50
Whooping cough 95
oregon.
Chicken pox 0
Diphtheria:
Portland 12
Scattering 6
Measles 2
Mumps 4
Pneumonia 14
Scarlet fever 13
Smallpox 5
Tuberculosis 5
Typhoid fever 5
Whooping cough 7
Diphtheria 4
Infuenza 1
Mumps 1
Poliomyelitis 1
Scarlet fever 15
Smallpox 2
Tuberculosis 4
Typhoid fever 6
Whooping cough 11
TEXAS.
Cerobrospinal meningitis 4
Chicken pox 13
Dengue 23
Diphtheria 45
Dysentery (epidemic) 52
Influenza 98
Lethargic encephalitis 4
Malta fever 2
Measles 17
Mumps 26
Ophthalmia neonatorum 2
Paratyphoid fever 19
Pellagra 44
Pneumonia 15
Poliomeylitis. 2
Rabies in man 3
Scarlet fever 21
Smallpox 4
Tetanus 5
Trachoma 8
Tuberculosis 39
Typhoid fever 63
Typhus fever 1
Whooping cough 45
VERMONT.
Chicken pox 1
Diphtheria 2
Measles 10
Scarlet fever 2
Smallpox 1
Whooping cough 24
${ }^{1}$ Deaths.

WASHington.	Cases.	wreconans.	Cases.
Chicken pox --		Milwaukee:	
Diphtheria.		Chicken pox.	
Measles	..- 2	Diphtheria.	.. 6
Mumps.	... 2	Measles.	
Poliomyelitis:		Mumps.	- 3
Bellingham	- 2	Pneumonia	- 1
Chelan County	- 8	Poliomyelitis.	- 1
Kittitas County	3	Scarlet fever.	12
Okanogan County	1	Smallpox	- 1
Seattle	4	Tuberculosis.	. 21
Skagit County	1	Typhoid fever-	- 1
Spokane..	. 1	Whooping cough	- 29
Tacoma.	2	Scattering:	
Thurston County	- 1	Chicken pox..	19
Walla Walla County	- 1	Diphtheria.	29
Ecarlet fever	.. 28	German measles	- 1
Smallpox.	13	Influenza	- 9
Tuterculosis.	.- 46	Measles.	- 11
Typhoid fever-	- 17	Mumps.	- 9
Whooping cough	.-	Pneumonia	- 7
WEST VIRGINIA.		Poliomyelitis.	- 1
Cerebrospinal meningitis.	- 1	Scarlet fever.	40
Diphtheria..	.- 5	Smallpox.	14
Scarlet fever-	.- 4	Tuberculcsis	22
Smallpox..	-	Typhoid fever.	5
Typhoid fever	13	Whooping cough	100
Reports for Week Ended September 6, 1924.			
california. Cases.		district of columbin-	Cases.
Cerebrospinal meningitis-Siskiyou	1	Typhoid fever.	2
Diphtheria.	116	Whooping cough	7
Influenza...	3	NEBRASKA.	
Lethargic encephalitis-San Franci	1	Chicken pox.....................	
Measles..-...	16	Diphtheria.	14
Poliomyelitis:		Scarlet fever.	14
Los Angeles..	1	Tetanus.	
Fresno County.	1	Tuberculosis	
Scarlet fever...	44	Tuberculosis	
Smallpox: ${ }^{\text {a }}$			
Los Angeles.	15	NORTH DAKOTA.	
Los Angeles County.	18	Chicken pox	2
Scattering-	22	Diphtheria...	- 3
Typhoid fever-...-.	17	Pneumonia	1
district of columbia		Poliomyelitis.	8
Chicken pox...	5	Scarlet fever.	12
Diphtheria...	5	Tuberculosis.	- 1
carlet fever.	8	Typhoid fever	- 1
Tuberculosis..	17	Whooping cough.	10

SUMMARY OF MONTHLY REPORTS PROM STATES.

The follewing sammary of monthiy State reports is published weekly and covers only those States from which reports are received during the current week.

State.	Cere- bpo- spinal menin- gitis.	Diphtheria.	Inflar enza.	$\begin{gathered} \text { Ma- } \\ \text { laria. } \end{gathered}$	Measles.	Pellagra.	Palio-myofitis.	Scariet fever.	Smallpox.	T5. phoid fever.
July, 1924.										
Cotorado.		88			49			36	10	20
Sugust, 1924.										
Arizoma----	8				38		1 36	88	2	7
Delaware...		3	9	1	2			8		4
Georgia .-..-.	2	60	4	204	26			20	21	164
Massachusetts.	8	376	2	9	149		37	227	.-.	65
W yoming--...-...-		5	1		2			11		6

GENERAL CURRENT SUMMARY AND WEEKLY REPORTS FROM CITIES.

Diphtheria.-For the week ended August 30, 1924, 35 States reported 1,063 cases of diphtheria. For the week ended September 1,1923 , the same States reported 1,284 cases of this disease. One hundred and one cities, situated in all parts of the country and having an aggregate population of about $28,000,000$, reported 477 cases of diphtheria for the week ended August 30, 1924. Last year, for the corresponding week, they reported 634 cases. The estimated expectancy for these cities was 637 cases of diphtheria. The estimated expectancy was based on the experience of the last nine years, excluding epidemics.

Measles.-Thirty States reported 269 cases of measles for the week ended August 30, 1924, and 1,037 cases of this disease for the week ended September 1, 1923. One hundred and one cities reported 120 cases of measles for the week this year and 333 cases last year.

Scarlet fever.-Scarlet fever was reported for the week as follows: Thirty-five States-this year 659 cases; last year 806 cases. One hundred and one cities-this year 307, last year 309 cases; estimated expectancy, 282 cases.

Smallpox.-For the week ended August 30, 1924, 35 States reported 205 cases of smallpox. Last year, for the corresponding week, they reported 145 cases. One hundred and one cities reported smallpox for the week as follows: 1924, 88 cases; 1923, 40 cases; estimated expectancy, 30 cases. These cities reported 4 deaths from smallpox for the week.

Typhoid fever.-Eight hundred and forty-eight cases of typhoid fever were reported for the week ended August 30, 1924, by 34 States. For the corresponding week of 1923 the same States reported 904
cases. One hundred and one cities reported 214 cases of typhoid fever for the week this year and 264 cases for the week last year. The estimated expectancy for these cities was 247 cases.

Influenza and pneumonia.-Deaths from influenza and pneumonia (combined) were reported for the week by 101 cities as follows: 1924, 326 deaths; 1923, 302 deaths.

City reports for week ended August S0, 1924.
The "estimated expectancy" given for diphtheria, poliomyelitis, scarlet fever, smallpox, and typhoid fever is the result of an attempt to ascertain from previous occurrence how many cases of the disease under consideration may be expected to occur during a certain week in the absence of epidemics. It is based on reports to the Public Health Service during the past nine years. It is in most instances the median number oi cases reported in the corresponding week of the preceding years. When the reports include several epidemics, or when for other reasons the median is unsatisfactory, the epidemic periods are excluded and the estimated expectancy is the mean number of cases reported for the week during nonepidemic years.
If reports have not been received for the full nine years, data are used for as many years as possible, but no year earlier than 1915 is included. In obtaining the estimated expectancy, the figures are smoothed when necessary to avoid abrupt deviations from the usual trend. For some of the diseases given in the table the available data were not sufficient to make it practicable to compute the estimated expectancy.

Division, State, and city.	Chicken pox, cases reported.	Diphtheria.		Influenza.		$\begin{gathered} \text { Mea- } \\ \text { sles, } \\ \text { cases } \\ \text { re } \\ \text { ported. } \end{gathered}$		Pneumonia, deatbs reported.	Scarlet fever.	
		Cases, estimated expectancy.	Cases reported.	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported. } \end{gathered}$	Deaths reported.				Cases, estimated expectancy.	Oases reported.
NEW ENGLAND.										
Maine:										
Lewiston-.....-	0	1	0	0	0	0	0	0	1	0
Portland-....--	0	1	0	0	0	0	0		1	0
New Hampshire: Concord	0	1	0	0	0	0	0	0	0	0
Vermont:										
Barre--.-.----.	0	0	0	0	0	0	0	0	1	0
Burlington-...-	0	0	0	0	0	0	0	0	1	0
Massachusetts:	0	33	26	0	0	16	2	13	12	17
Fall River.	0	3 2	1	0	0	1	0	0	1	2
Springfield....-	0	2	0	0	0	3	3	0	1	1
Worcester.-...--	2	3	0	0	0	1	2	0	2	0
Rhode Island: Pawtucket	0	1	0	0	0	0	0	0	0	0
Providence...---	0	6	3	0	0	0	0	3	2	4
Connecticut:										
Bridgeport.-.--	0	4	2	1	1	0	0	0	1	3
New Haven...	0	4 3	$\stackrel{1}{2}$	0	0	2	1	2	2	0
middle atlantic.										
New York: Buffalo	0	13	2				0	9	6	1
- New York	13	92	102	1	2	17	5	84	24	32
Rochester		5	0	0	0	2		3	2	5
Syracuse-	0	5	2	0	0	1	1	0	4	1
New Jersey:	1	0	2	0	0					0
Newark	0	8	11	0	0	8	0	0	3	6
Trenton........--	0	4	1	0	0	0	0	2	1	0
Pennsylvania:										
Phitadelphia .-.	1	32 20	10		0	1	17	${ }_{21}^{16}$	7	14
Reading-.---	0	2	1	0	0	0	1	0	0	0
Scranton	1	2	2	0	0	1	0	3	0	0
EAST NORTH CENtral.										
Ohio:	2		0		1	0	0	2		5
Cleveland -....-		23							10	
Columbus Thario	$\begin{gathered} -0 \\ 0 \\ 0 \end{gathered}$	3 6	$\begin{gathered} 1 \\ 8 \end{gathered}$	$-$	$\begin{aligned} & 7 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{gathered} -7 \\ \mathbf{c} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	3 5	4

City reports for week ended August 30, 192\%-Continued.

Division, State, and city.	Chicken pox, cases reported.	Diphtheria.		Influenza.		Measles, cases reported.		Pncumonia, deaths reported.	Scarlet fever.	
		Cases, estimated expectancy.	Cases reported.	Cases reported	Deaths reported.				Cases, estimated expectancy.	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported. } \end{gathered}$
EAST NORTH CRN-TRAL-contd.										
Indiana: Fort Wayne....		2	1	0	0	0				2
Indtanapolis.--		10	3	0	0	0		4	3	0
South Bend....	0	2	4	0	0	0	0	0	2	0
Terre Haute..-	0	1	1.	0	0	0	0	0	0	2
Illinois:										
Chicago...-.-.-	8	71	27		1	10	6	23	36	16
Cicero-....-...--	0	3	1	0	0	0	0	0	2	1
Peoria--lide-----	0	1	0	0	0	1	0	2	1	0
Michigan:										
Detroit-.-------	7	39	8	2	0	2	6	14	23	20
Flint.-...---...	1	6	0	0	0	1	1	0	2	7
Grand Rapids_-	0	8	2	0	0	0	0	2	2	7
Wisconsin:										
Madison-.....-	1	0	2	2	0.	0 2	1		11	0
Racine.......--	8	1	0	0	0	0	0	1	1	0
Superior-....---	0	0	0	0	0	0	0	0	1.	1
WEST NORTH CENtral.										
Minnesota:										
Duiuth .----..-	1.	2	0	0	0	0	0	1	3	5
Minncapolis...	10	14	8	0	0	0	2	2	7	14
St. Paul.......-		13	10	0	0	0		4	3	5
Iowa: ${ }_{\text {Sioux }}$ City										
Sioux City	1	1	0	0		0	0		1	0
Missouri:										
Kansas City-.-	0	5	2	0	0	0	0	5	2	0
St. Joseph-....-	0	1	0	0	0	0	0	0	1	0
St. Louis-.-.----	8	26	23	0	0		4		7	32
Fargo-........-	0	0	0	0	0	0	0	0	1	0
Grand Forks.--	0	1	0	0		0	0		1	0
South Dakota:										
Sioux Falls	0	0	1	0	0	0	0	0	0	0
Lincoln........-	0	0	0	0	0	0	0	0	0	0
Omaha-...-...-	1	8	5	0	0	1	0	5	2	1
Kansas:										
Topeka Wichita	0	$\frac{1}{2}$	1 0	0 0	0	0	0	0 1	1	0
south atlantic.										
Delaware:										
Wilmington..--	0	1	3	0	0	0	0	1	1	0
Maryland:										
Baltimore.-.... Cumberland	1	11	16 0	1	1	${ }_{0}^{6}$	0	10 1	0	5
Frederick...--		0	2	0	0	0		0	0	0
DistrictofColumbia Washington	2	4	2	0	0	0	0	9	3	7
Virginia:										
Lynchburg-...-	0	1	1	0	0	0	0	1	0	0
Norfolk.-.-...-	0	2	1	0	0	0	1	0	0	1
Richmond.-.-.	0	6	15	0	0	4	0	2	3	4
Roanoke.-.-...	0	2	4	0	0	0	0	0	1	1
West Virginia: Charleston				0	0		0	1	1	1
- Huntíngton...--	0	1	0	0		0	0		1	1
Wheeling	0	2	1	0	0	0	0	1	2	1
North Carolina:										
Waleigh.-...---										
Wilmington...-		1	${ }^{2}$	0	0			1	0	4
Winston-Salem	1	1	17	0	0	1	1	1	1	4
south Carolina: Charleston	0			0		0	0	1		1
Columbia......-	0	1		0	0	0	0	0	0	0
Greenville......	0	1	2	0	0	0	0	1.	1	0

City reports for week ended August 30, 1924-Continued.

Division, State, and city.	Chicken pox, cases reported	Diphtheria.		Influenza.		Measles, cases reported.		Pneumonia, deaths reported.	Scarlet fever.					
		Cases, estimated expectancy.	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported. } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \text { re } \\ \text { ported. } \end{gathered}$	Deaths reported.				Cases, estimated expectancy.	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported } \end{gathered}$				
south atlanticcontinued.														
Georgia:														
Atlanta........	0	5	0	0	0	0	0							
Brunswick......	0	0	0	0	0	0	0	0	0	0				
Savannah.....-	0	1	0	0	0	0	1	0	1	0				
Florida: St. Petersburg-	C		0	0	1	0	0		0					
Tampa.........-		2	1	0	0	0	0	0	0	0				
EAST south central.														
Kentucky:														
Covington....-	0	1	0	0	0	0	0	0	0	1				
Lexington-....-		1							0					
Lennessee:	0	6	1	0	0	1	0	1	1	1				
Memphis.--.--	0	6	3	0	0	0	0	3	2	2				
Nashville.....--	0	1	2	0	1	0	0	2	2.	0				
Alabama: Birmingham														
Mobile..........	0	1	0	0	0	0	0	1	0	0				
Montgoinery.-.		1							1					
West south cen-														
New Orleans:--	0	8	7	2	1	0	0	4	1	2				
Oklahoma.-..-	0	1	0	0	0	0	1	0	1	0				
Galveston.......	0	0	1	0	0	0	0	1	1	0				
Houston.......-		2	1	0	1	0		1	1	3				
San Antonio.--	0	1	0	0	0	0	0	2	1	0				
mountain.														
Montana:														
Great Falls..--	0	1	0	0	0	0	0	1	0	0				
Helena.........-	0	0	0	0	0	0	0	1	0	0				
Denver--------	3	8	15	0	0	3	1	9	3	10				
Pueblo---.-.-.-	0	4	0	0	0	0	0	0	0	5				
Utah:														
Salt Lake City-	2	2	1	0	0	1	4	2	2	2				
Nevada: Reno	0	0	0	0	0	0	0	0	0	0				
PACIPIC.														
Washington:														
Seattle......-.	5	3	6	0	--	0	1	-	3	7				
Spokane--.....	1	1	0	0		0	0		3	0				
California:														
Los Angeles...-	4	18	28	2	0	3	1	11	5					
Sacramento...- San Francisco	0	18	5	0	0	0	0	1	1	0				
San Francisco.-	2	15	15	0	0	1	3	5	6	5				

City reports for week ended August 30, 1924-Continued.

Division, State, and city.	Popula-tion tion July 1, estimated.	Smallpox.				Typhoid fever.								
				Deaths reported.				Deaths reported.						
	33,790 73,129	0		0	0		1	0	0	16				
Burlington	23, 613	0	0	0	0	1	0	0	0	11				
Massachusetts: --..---..........---														
Boston.....	770, 400	0	0	0	19	6	2	0	12	200				
Fall River	120, 912	0	0	0	1	2	0	0	4	24				
Springfield	144, 227	0	0	0	1	1	0	0	${ }_{2}^{2}$	25 52				
Rhode Island:														
Pawtucket.	68,799	0	0	0	1	1	0	0	0	9				
Providence.	242, 378	0	0	0	3	1	2	0	1	48				
Connecticut:														
Hartiord.	1138,036	0	0	0	3	2	0	0	2	15				
New Haven.	172,967	0	0	0	1	4	8	0	16	25				
middle atlantic.														
Buffalo..-	$\begin{array}{r}536,718 \\ 5,927 \\ \hline\end{array}$	0	0	0	${ }_{2}^{12}$	3 47	${ }_{31}^{1}$	0	18 154	1.128				
New York	5, 317,867	0	1	0	${ }^{2} 1$	1	0	0						
Syracuse.	184, 511	0	0	0	1	1	0	0	2	38				
New Jersey:														
Newark.	438, 699	0	0	0	6	3	0	1	117	92				
Philadelphia	1, 922,788	0	0 5	0	$\begin{array}{r}30 \\ 8 \\ \hline\end{array}$	17	2	2	${ }_{11} 96$	406 147				
Reading...	110,917	0	0	0	1	1	0	0	24	30				
Scranton:-	140, 636	0	0	0	2	0	3		25					
east north central.														
Ohio:														
Cincinnati.	406, 312	1	0	0	10	3	2	1	4	114				
Cleveland..	888,519	1												
Columbus.	281, 082	0	0	0	8	2	4	0	7	78				
Toledo.	268, 338	0	2	1	0	2	4	0	15	41				
Indiana:														
Indianapolis	342, 718	1	0	0	9	3	1	1		106				
South Bend.	76, 709	0	0	0	1	0	0	0	0	5				
Terre Haute	68,939	0	0	0	1	0	0	0	0	14				
Illinois:														
Chicago	2, 886, 121	0	3	0	30	7	6	0	132	529				
Cicero.	55,968	0	0	0	0	0	0	0	0	4				
Peoria	79,675	0	0	0	1	1	0	0	0	20				
Springfield...-...---....-	61,833	0	0	0	0	1	0	0		16				
Detroit	995, 668	1	2	1	22	5	0	0	72	244				
Flint	117,968	0	2	0	1	2	0	0	0	15				
Grand Rapids.	145, 947	1	0	0	0	1	0	0	4	28				
Wisconsin:														
Milwaukee.	484, 595	1	0	0	7	1	0	0	27	70				
Racine...	64, 393	0	0	0	0	0	0	0	0	5				
Superior --....-	${ }^{1} 39,671$	1	1	0	0	0	0	0	0	14				

${ }^{1}$ Population Jan. 1, 1920.
${ }^{2}$ Pulmonary only.

City reports for week ended August 50, 1984-Continued.

Division, State, and city.	$\begin{gathered} \text { Popula- } \\ \text { tion } \\ \text { July 1, } \\ \text { 1923, } \\ \text { estimated. } \end{gathered}$	Smallpox.				Typhoid fever.								
			Cases reported.	Deaths reported.			Cases reported.	Deaths reported.						
West North central.														
Minnesota: ${ }_{\text {Daluth }}$	106, 289	θ	0	0	0	0	3	0	6	25				
Mímeapolis	409, 125	2	6	0	8	2	0	0	2	70				
Sioux City W aterloo.	79, 39,688	8	\bigcirc		-	0	10		4	.-....				
Missoari:														
Kansas City	351, 819	1	0	0	5	,	3	1		82				
St. Joseph.	78,232	0	0	0	0	0	0	0	2	24				
St. Louis -:	803, 853	1	0	0	11	7	17	1	3	189				
Grand Forks.................-- ${ }^{\text {Gouth Dakota: }}$ 14,547 $\quad 0$														
South Dakota: Sioux Falls	29,206	-	θ	0	0	0	0	0	0	9				
Nebraska:														
Lincoln.	58,761	${ }^{0}$	2	1	1	0	0	0	0	11				
W lchita	79, 261	1	-	0	0	2	2	0	7	18				
SOUTH ATLANTIC.														
Wilmington.	117,728	0	0	θ	0	1	3	2	2	20				
Maryland:														
Cumberland	32,361	0	0	0	0	1	2	0	2	16				
Frederick	11, 301	0	0	0	0	1	1	0		0				
Virginia:														
Lynchburg	30, 277	-	0	0		,	1	0	0	9				
Nichmond	19, 089	0	0	0	3	1 2 2	$\stackrel{3}{0}$	0	3					
Roanoke.	185, 502	0	0	0	0	3	5	0	1	18				
Charleston.	45,597	0	1	0	0	2	4	0	0	20				
Whintington	57,918	0	0		-	1	0		0					
North Carolina:														
Wilmington.	35,719	0	0	θ	0	1	0	0		13				
Winston-Salem	56, 230	0	0	0	3	2	0	0	9	12				
South Carolina:														
Charleston.	71, 245	0	-	0		2	2	0	0	14				
Columbia	39,688	0	1	0	0	1	2	0	1	13				
			0	0		0	0	0	3					
Georgla: Atlanta	222, 963	1	0	0	7	5	1	1						
Branswick	15,937	0	0	0	1	1	0	0	θ	5				
Savannah	89, 448	0	0	0	4	2	1	0	0	32				
Florida:														
Tampa...-........-..........	56,050	0	0	0	0	1	0	0		6				
EAST SOUTH CENTRAL.														
Kentucky:														
Covington.	57,877	0	0	0	0	1	1	0	0	13				
Lexington.	43,673	0				1								
Nashville.-	121, 128	0	1	0	1	6	7	0	1	48				
Alabama:														
Birmingham.	195,901 63,858	0	8	0	4	6	15 3	0	2	49 23				
Montgomery....	45, 383	0				1								

[^13]City reports for week ended August 30, 1924-Continued.

Division, State, and city.	Population, July 1, 1923, estimated.	Smallpox.				Typhoid fever.								
							Cases reported.							
west south central.														
Arkansas:														
Fort Smith.	30,635 70,916	0	0			2	0	0	2					
Louisiana: ${ }^{\text {Little }}$ Rock.			0	0	4	2	6	0	0-				
New Orleans..	404, 575	1	0	0	10	4	5	2	3	130				
Shreveport--	54, 590		0	0	1		5	0	0	17				
Oklahoma: Oklahoma	101, 150	0	0	0	1	1	4	0	0	17				
Tulsa.....	102, 018	0	0			3	0		0	17				
Texas:														
Dallas..	177, 274	0	1	0	7	3	9	3	2	39				
Galveston.	46,877	0	0	0	2	0	0	1	0	23				
Houston.	154,970	0	0	0	1	1	0	0		37				
San Antonio	184, 727	0	0	0	6	0	0	0	0					
Montana. mountain.														
Billings.	16,927	1	1	0	0	0	1	0						
Great Fails.	27,787	1	0	0	0	1	0	0	0	10				
Helena.-	${ }^{1} 12,037$	0	0	0	0	0	0	0	0	2				
Missoula	112,668	1	0	0	0	0	1	0	0	8				
Idaho:														
Denver.	272,031	2	0	0	13	4	0	0	14	80				
New Mexico:														
Salt Lake City	126, 241	2	0	0	0	1	5	2	3	33				
Nevada: Reno...	12,429	0	0	0	0	1	0	0	0	1				
pactific.														
Washington: 1 215,695														
Seattle...	${ }^{1} 315,685$	1	1			2	2		5					
Spokane.	104, 573	1	0			1	0		7					
Tacoma.	101, 731	0	2			1	0							
Oregon: Portland	273, 621	3	6	0	1	1	0	0	0					
California:														
Los Angeles..	666, 853	1	15	0	16	4	1	0		169				
Sacramento --	69,950	1	4	0	2	1	0	0	0	25				
San Francisco.	539, 038	1	0	0	8	2	0	0	0	124				

[^14]City reports for week ended August S0, 1924-Continued.

Division, State, and city.	Cerebrospinal meningitis.		Iethargic encephalitis.		Pellagra.		Poliomyelitis (infantile paralysis).		
	$\begin{aligned} & \dot{\mathbf{8}} \\ & \text { O } \end{aligned}$		$\begin{aligned} & \dot{\ddot{y}} \\ & \text { O. } \end{aligned}$		\%	$\begin{aligned} & \dot{\text { ai }} \\ & \stackrel{\rightharpoonup}{\oplus} \\ & \stackrel{0}{0} \end{aligned}$		-	¢ ¢ ¢ ¢
NET ENGLAND. Maine: Lewistor Massachusetts:	020000	0	0	0	0	0	0	1	0
Boston.-		1	1		00	0	1	51	0
Fall River........-....-.--				0		0			
Rhode Lsland: Providence		0	0	0	0	0	0	1	0
Connecticut: Bridgeport		0	1	0	0	0	0	03	0
Hartiord \qquad middle atlantic.									
New Yark:		030	080		0	1	080	01510	
Buffalo--	860			0					0
New Yoik				1					1
Syracuse.........-.-....-		0		0					1
New Jersey: Newark	0	0	1	0	0	0	1	0	0
Pennsylvania: Philadelphia	0	0	2	0	0	0	1	1	
fast north central.									0
Ohio:									
Cineinnati..........-.....-	00	0	0	2	0	0	0	02	0
Colambus_--.-.-.-.-...--									
Indiana: Fort Wayne	0	0	0	0	0	0	0	2	1
Ininois:			0	0	0	0	5		
Chicago Michigen:	0	0		0				3	0
Detroit..........-.-......-	00	0	0	0	0	0	1	384	0
Grand Rapids....-......-									
west north central.									
Minnesota:	0	1	0	0		0	1		
St. Paul					0			0	0
Missouri: St. Louis	0	0	0	0	0	0	1	2	0
North Dakota:									
Fargo-.---------....--	0	0	0	1	0	0	0	0	0
Grand Forls sOUTH ATLAMTIC.									
Maryland:	2	0		1					0
Baltimore.			1		0	0	2	8	
Virginia: Norfolk	1	0	0	0	0	0	0	0	0
North Carolina:						0			
Winston-Salem...----.--	0	0	0	0	1		0	1	0
Georgia: Attanta	0	0	0	0	0	2	0	0	0
east south central.									
Alabama: Birmingham	0	0	0	0	1	1	0	0	0
west south central. Louisiana: Shreveport	0		0		0	1		0	
Oklahoma:								0	0
Oklahoma....	0	0	0	1	0	0	0	0	0
mountain.									
Montana:									
Billings...	0	0	0	0	0	0	0	0	1
Missoula	0	0	0	0	0	0	0	14	1
Colorado: Denver.	0	0	0	0	0	0	0	1	0
PACIFIC.									
Washington:									
Seattle...	0		0		0		0	10	
California:									
Los Angeles............---	0	0	0 1	0	0	0	0	- ${ }^{2}$	0

The following table gives a summary of the reports from 105 cities for the 10 -week period ended August 30, 1924. The cities included in this table are those whose reports have been published for all 10 weeks in the Public Health Reports. Eight of these cities did not report deaths. The aggregate population of the cities reporting cases was estimated at nearly $29,000,000$ on July 1, 1923, which is the latest date for which estimates are available. The cities reporting deaths had more than $28,000,000$ population on that date. The number of cities included in each group and the aggregate population are shown in a separate table below.

Summary of weekly reports from cities, June 22 to August 30, 1924.
DIPHTHERIA CASES.

	1924, week ended-									
	June 28.	$\begin{gathered} \text { July } \\ 5 . \end{gathered}$	$\begin{aligned} & \text { July } \\ & 12 . \end{aligned}$	$\begin{aligned} & \text { July } \\ & 19 . \end{aligned}$	$\begin{aligned} & \text { July } \\ & 26 . \end{aligned}$	Aug. $2 .$	$\begin{gathered} \text { Aug. } \\ 9 . \end{gathered}$	$\begin{gathered} \text { Aug. } \\ 16 . \end{gathered}$	Aug. 23.	Aug. 30.
Total	891	666	693	652	560	477	538	456	494	480
New England.	78	64	55	71	59	47	60	47	48	35
Middle Atlantic.	387	296	301	274	222	188	197	149	189	167
East North Central	136	101	135	120	99	83	103	91	88	169
West North Central	36	50	52	36	37	40	43	38	49	50
South Atlantic..	20	17	19	26	21	28	22	40	39	268
East South Central.	8	1	3	2	6	3	6	7	9	${ }^{28}$
West South Central	15	19	5	5	15	12	7	13	15	11
Mountain..	30	19	36	25	14	5	10	22	14	16
Pacific.	181	99	87	93	87	71	90	49	43	56

MEASLES CASES.

Total	1,857	1,186	987	676	528	406	253	178	136	121
New England	120	90	66	52	59	41	11	23	23	26
Middle Atlantic	774	535	422	283	204	160	97	65	46	41
East North Central.	565	288	295	202	155	126	75	51	37	125
West North Central	63	46	29	35	22	16	11	7	4	9
South Atlantic.	187	141	91	55	43	34	36	16	10	211
East South Central	19	15	15	13	6	3	2	4	5	31
West South Central.	5	1	7	3	5	3	0	1	1	0
Mountain.	35	22	11	7	6	7	3	1	1	4
Pacific.	89	48	51	26	28	16	18	10	9	4

SCARLET FEVER CASES.

Total	713	563	561	441	340	369	360	248	291	307
New England.	92	59	50	39	38	40	36	24	28	29
Middle Atlantic.	226	186	144	114	90	73	85	49	55	69
East North Central	161	132	168	102	90	126	108	57	74	174
West North Central.	102	68	100	93	65	65	61	61	75	58
South Atlantic.	43	30	47	33	15	20	21	12	21	226
East South Central	1	1	7	7	7	2	3	10	13	39
West South Central.	7	11	8	5	9	11	5	9	5	5
Mountain.	12	16	4	14	5	7	12	5	4	17
Pacific	69	60	33	34	21	25	29	21	16	20

SMALLPOX CȦSES.

Total	239	159	169	158	108	116	106	93	71	88
New England.	0	0	1	0	0	0	0	0	0	0
Middle Atlantic.	16	19	16	17	9	9	7	8	3	11
East North Central	61	44	33	44	36	28	23	16	20	112
West North Central	41	23	47	33	13	18	15	28	5	25
South Atlantic....	12	9	3	5	3	3	4	6	4	22
East South Central	36	23	21	18	13	16	8	13	14	${ }^{3} 13$
West South Central	7	1	1	0	0	2	0	0	1	1
Mountain...	9	5	6	4	2	2	1	1	2	2
Pacific.	57	35	41	37	32	38	48	21	22	22

[^15]Summary of weekly reports from cities, June 28, to August 30, 1924-Continued.
TYPHOID FEVER CASES.

	1224, week ended-									
	June 28.	$\underset{5}{\text { July }}$	$\begin{aligned} & \text { July } \\ & \text { 12. } \end{aligned}$	$\begin{aligned} & \text { July } \\ & \text { 19. } \end{aligned}$	July	Aug.	Aug.	$\begin{aligned} & \text { Aug. } \\ & \text { 16. } \end{aligned}$	Aug. 23.	Aug.
Total	91	128	142	197	191	191	250	232	238	222
New England.	4	2	6	7	6		6	15	8	12
Middle Atlantic..	41	46	34	50	59	59	63	63	65	41
East North Central	11	9	20	20	17	20	30	29	22	${ }^{122}$
West North Central	5	15	12	10	11	9	22	22	17	28
South Atlantic.	10	23	25	36	25	31	44	37	35	${ }^{2} 34$
East South Central.	3	8	10	31	29	36	40	24	49	${ }^{3} 50$
West South Central	4	8	21	28	22	17	19	26	29	25
Mountain.----------	3	6	5	4	- 7	4	5	9	0	7
Pacific.....	10	11	9	13	15	11	21	7	13	3

INFLUENZA DEATHS.

PNEUMONIA DEATHS.

Total	432	358	318	307	304	292	260	271	251	314
New England.	22	19	16	14	16	17	14	14	12	19
Middle Atlantic	200	167	141	127	126	131	121	115	102	136
East North Central	91	62	55	53	58	50	. 51	48	48	155
West North Central	11	15	22	17	13	14	9	17	13	18
South Atlantic.	50	39	39	37	35	36	29	32	38	234
East South Central	15	14	9	12	15	12	10	10	5	${ }^{1} 11$
West South Central	12	16	16	22	20	11	14	12	10	11
Mountain..	12	8	10	4	7	4	8	7	10	13
Pacific.	19	18	10	21	14	17	13	16	13	17

${ }^{1}$ Figures for Cleveland, Ohio, estimated. Reports not received at time of going to press.
Figures for Raleigh, N. C., estimated.
${ }^{2}$ Figures for Montgomery, Ala., estimated.
Number of cities included in summary of weekly reports and aggregate population of cities in eack group, estimated as of July 1, 1923.

Group of cities.	Number of cities reporting cases.	Number of cities reporting deaths.	Aggregate population of cities reporting cases.	Aggregate population of cities reporting deaths.
Total	105	97	28, 898, 350	28,140,934
New England.	12	12	2, 098, 746	2,098,749
Middle Atlantie	10	10	10,304, 114	10, 304, 114
Rast North Central	17	17	7,032, 535	7, 032,535
West North Central	14	11	2, 515, 330	2, 381,454
South Atlantic.	22	22	2, 566, 901	2,566, 901
East South Central	7	7	911,885	911,8\%
West South Central	8	6	1,124,564	1,029,013
Mountain.	9	9	546,445	548,455
Pacific.	6	3	1,797,830	1, 275,841

FOREIGN AND INSULAR.

CANADA.

Communicable Diseases-Ontario-August, 1924. (Comparative.)
Communicable diseases have been notified in the Province of Ontario, Canada, for the month of August, 1924, as follows:

Disease.	August, 1924.		August, 1923.	
	Cases.	Deaths.	Cases.	Deaths.
Cerebrospinal meningitis.	9	5		8
Chancroid...-	175		(1) 7	
Diphtheria.-	269	16	194	12
German measles.	15		(1)	
Gonorrhea -	175		212	
Infurgic encephalitis.	18	3 1		
Measles.................	879	3	256	3
Mumps.-.-.	180		(l)	
Paratyphoid fever	2		(1)	
Pneumonia.-	3	45		83
Scarlet fever	337	7	215	6
Septic sore throat	3		${ }^{(1)}$	
Smallpox.	6		9	
Syphilis -...-	, 121		161	
Tuberculosis...	${ }^{2} 156$	74	213	135
Typhoid fever---	120 300	8 4	114	14

Population, 2,182,947.
${ }^{1}$ Not reported in 1923.

$$
2 \text { Only } 50 \text { per cent stated to be reported. }
$$

Goiter.

During the period under report 61 cases of goiter were notified in the Province of Ontario, Canada. The disease was stated not to have been notifiable in the year 1923.

CHILE.
 Typhus Fever-Talcahuano-Valparaiso.

Typhus fever has been reported in Chile as follows: Talcahuano, week ended August 2, 1924, 3 deaths, with 11 cases reported present; Valparaiso, three weeks ended August 9, 1924, 11 deaths.

CUBA.
 Communicable Diseases-Habana.

Communicable diseases have been notified at Habana, Cuba, as follows:

Disease.	Aug. 21-31, 1924.		Remaining under treatment Aug. 31, 1924.	Disease.	Aug. 21-31, 1924.		Remaining under treatment Aug. 31, 1924.
	New cases.	Deaths.			New cases.	Deaths.	
Chicken pox.	1			Measles	2		
Diphtheria.	4		3	Paratyphoid feve			2
Leprosy-...			15	Scarlet fever.....	1		2
Malaria.	10		${ }^{1} 35$	Typhoid fever.	40	10	${ }^{2} 170$

[^16]${ }^{2}$ From the interior, 38.

Typhoid Fever-Summary-June-August, 1924.

Occurrence of typhoid fever at Habana during the period June 1 to August 31, 1924, has been stated as follows: June 1-30, 1924cases, 198; deaths, 24. July 1-31, 1924 -cases, 393; deaths, 76. August 1-31, 1924-cases, 157; deaths, 37.

Paratyphoid Fever.

During the period under report, paratyphoid fever was reported as follows: June, 1924-cases, 11; deaths, 1. July, 1924-cases, 8. August, 1924-cases, 5.

CZECHOSLOVAKIA.

Communicable Diseases-April-June, 1924.

During the three-month period April to June, 1924, inclusive, communicable diseases were notified in Czechoslovakia as follows:

Disease.	Cases.	Deaths.	Provinces reporting greatest number of cases.
Anthrax	13	3	Russinia: Cases, 8; deaths, 3.
Cerebrospinal meningitis	69	21	Slovakia: Cases, 33; deaths, 6.
Diphtheria.---	853	51	Bohemia: Cases, 425; deaths,
Dysentery	94	6	Bohemia: Cases, 32; deaths, 4.
Malaria	46	1	Russinia: Cases, 34.
Paratyphoid fever A	9	1	Bohemia.
Paratyphoid fever B	61	1	Moravia: Cases, 50.
Scarlet fever	1,678	84	Bohemia: Cases, 611; deaths, 25.
Smallpox.	7	2	Bohemia: Cases, 6; deaths, 2.
Trachoma	804		Slovakia: Cases, 348; deaths,
Typhoid fever	1,174	95	Slovakia: Cases, 493; deaths,
Typhus fever	6		Slovakia: Cases, 4.

Rabies.

During the period under report, seven deaths from rabies were notified in Czechoslovakia, of which four occurred in the Province of Bohemia.

ECUADOR.

$$
\text { Plague-Guayaquil—August 1-15, } 1924 .
$$

During the period August 1 to 15, 1924, a case of plague was reported at Guayaquil, Ecuador.

Plague-Infected Rats.

During the period under report, 7,592 rats were repoited taken at Guayaquil, of which 33 were found plague infected.

EGYPT.

Status of Plague.

During the week ended August 5, 1924, four cases of plague were reported in Egypt. Of these, one case occurred at Suez and the remaining three cases were distributed in three districts. From January 1 to August 5, 1924, 344 cases were reported as compared with 1,286 cases during the corresponding period of the year 1923.

ESTHONIA.
Communicable Diseases-June, 1924.
During the month of June, 1924, communicable diseases were notified in the Republic of Esthonia, as follows:

Disease.	Cases.	Disease.	Cases.
Diphtheria	27	Tuberculosis	132
Measles--.-...	9	Typhoid fever	37
Paratyphoid fever Scarlet fever	8 3	Typhus fever........	

Population, census, $1,107,059$.
FINLAND.
Communicable Diseases-July 16-31, 1924.
During the period July 16-31, 1924, communicable diseases were notified in Finland as follows:

Disease.	Cases.	Disease.	Cases.
Diphtheria.	28	Poliomyelitis..	
Dysentery	7	Scarlet fever.	44
Paratyphoid fever	28	Typhoid fever	24

Population, estimated, 3,402,503.

GREAT BRITAIN.

Typhus Fever-St. Helens.

Information received under date of August 19, 1924, shows the occurrence at St. Helens, England, of two cases of typhus fever and one suspect case during the period July 10 to August 7, 1924. The cases occurred in the same household. St. Helens is situated in the vicinity of Liverpool, on the Mersey River, and is a railway town.

JAPAN.
 Epidemic Cerebrospinal Meningitis-Typhoid Fever.

Under date of September 2, 1924, epidemic cerebrospinal meningitis, with a high death rate, was said to be spreading in the rural districts of Japan.

The death rate from typhoid fever in Tokyo, Japan, was stated to have been high since the earthquake last year. ${ }^{1}$

[^17]
LATVIA.

Communicable Diseases-June; 1924.

During the month of June, 1924, communicable diseases were notified in the Republic of Latvia as follows:

Disease.	Cases.	Disease.	Cases.
Anthrax	1	Measles	147
Cerebrospinal meningitis	3	Mumps....	35
Diphtheria	45	Scarlet fever.	62
Dysentery.	10	Small pox ----	1
Influenza.	1	Typhoid fever.	140
Lethargic encephalitis	1	Typhus fever--	${ }_{6}^{26}$
Malaria.	1	Whooping cough	62

Population, estimated, $1,900,000$.

Riga-City and Province.

During the same period communicable diseases were notified in the city and Province of Riga, as follows:

Disease.	Cases.		Disease.	Cases.	
	Riga city.	Riga province.		Riga city.	$\left\lvert\, \begin{gathered} \text { Riga } \\ \text { province. } \end{gathered}\right.$
Anthrax	1		Mumps	2	
Diphtheria.	14		Scarlet fever-...	25	-----.-.--
Dysentery	3		Typhoid fever	49	
Malaria..	57		Typhus fever--	1	6
				9	5

Population, Riga City, 315,000.

MADAGASCAR.

Further Relative to Plague-Diego Suarez-Tamatave.

Information received under date of July 17, 1924, shows confirmation of reported plague at the ports of Diego Suarez ${ }^{1}$ and Tamatave. On June 22, 1924, one case of plague was reported at Diego Suarez, followed by 13 cases with 8 deaths reported to July 10, 1924. At Tamatave the first case was reported June 6, 1924, and was followed during the month by the occurrence of four cases with four deaths.

$$
\text { Plague-Moramanga-June, } 1924 .
$$

During the month of June, 1924, a fatal case of plague was reported at Moramanga, a locality in the central-east section of Madagascar.

MALTA.

Communicable Diseases-August 1-15, 1924.
During the period August 1 to 15, 1924, communicable diseases were notified in the island of Malta, as follows:

Disease.	Cases.	Disease.	Cases.
Broncho-pneumonia.	1	Trachoma	
Lethargic encephalitis.	6	Tuberculosis..	11
Measles...-.	6	Typhoid fever	14
Pneumonia	2	Undulant fever	66

Population, estimated, 216,702.

POLAND.

Communicable Diseases-June 8-21, 1924.
During the period June 8 to 21, 1924, communicable diseases were reported in Poland as follows:

JUNE 8-14, 1924.

Disease.	Cases.	Deaths.	Districts showing greatest number of deaths.
Cerebrospinal meningitis.-	7	12	Warsaw.
Diphtheria.	60	2	Lwow.
Dysentery	${ }_{88}^{23}$	5	Krakow.
Malaria--	88 347	1	Stanislawow.
Relapsing fever	2		
Scarlet fever	196	16	Krakow.
Smallpox.	26	1	Do.
Typhoid fever	169	5	Silesia.
Typhus fever-	115	6	Krakow.
Whooping cough.	171	1	Warsaw.

JUNE 15-21, 1924.

Cerebrospinal meningitis	3	5	Posen.
Diphtheria	63	5	Lublin.
Dysentery	50	11	Krakow.
Malaria-	279	5	Lwow.
Relapsing fever	10	5	Lwow.
Scarlet fever..	157	10	Do.
Smallpox.	4	2	Krakow.
Typhoid fever	163	16	
Typhus fever-....-	85	6	Polesia.
Whooping cough..	108	4	Lwow.

Rabies.
During the period under report, two deaths from rabies were reported in Poland, both occurring in the district of Warsaw.

SOUTH_NIGERIA.
Plague-Lagos.
Plague was reported present at Lagos, Southern Nigerin, West Africa, September 8, 1924.

UNION OF SOUTH AFRICA.

Plague-Orange Free State.

During the week ended July 19, 1924, two cases of plague were reported in the Orange Free State, Union of South Africa. The cases occurred in natives on two farms in Smithfield district.

Cholera, plague, smallpox, typhus fever, and yellow FEVER.

The reports contained in the following tables must not be considered as complete or final as regards either the lists of countries included or the figures for the particular countries for which reports are given.

Reports Received During Week Ended September 19, 1924. ${ }^{1}$ cholera.

Disease.	Date.	Cases.	Deaths.	Remarks.
India..				July 6-12, 1924: Cases, 5,549;
Bombay	July 13-26.........		2	deaths, 3.477.
Madras.-	Aug. 3-9..........	3 4	4	
Rangoon. Indo-China:	July 20-26........--		4	
City- Saigon	June 29-July 19..-	5	4	
Persia: Bushire	June 1-30.	1	1	
Siam: Bangkok.	July 20-26.........-	1	1	

PLAGUE.

SMALLPOX.

Arabia:			1	
Brazil:	July 20-20..		1	
Porto Alegre	July 27-Aug. 2.-		1	
British South Africa: Northern Rhodesia.	July 8-21..........	25		
Canada: British ColumbiaVancouver	Aug. 10-16.	12		
China: Amoy \qquad				Present.
Chungxing				Do.
Colombia: Barranquilla.	Aug. 3-9..		1	
Czechoslovakia.-				Apr. 1-June 30, 1924: Cases 7; deaths, 2.
State-			2	
Russinia....				

${ }^{1}$ From medical officers of the Public Health Service, American consuls, and other sources.

Reports Received Dariag Week Ended September 19, 1924-Continued.
SMALLPOX-Continued.

TYPHUS FEVER.

Algeria: Algiers	July 1-31.	1		
Chile:				
Talcahuano	July 27-Aug. 2 .		3	Cases reported present, 11.
Valparaiso.	July 19-Aug. 9		11	
Czechoslovakia				Apr. 1-June 30, 1924: Cases, 6.
StateShovakia.	Apr. 1-June 30....	4		
Egypt:				
Alexandria	July 27-Aug. 5...-	1		
Port Said.	--..-do.	1		
Esthonia Great Britain:				June 1-30, 1924: Cases, 5
Great Britain: St. Helens.	Aug. 7.	2		One suspect case, July 10, 1924.
Latvia				Locality, vicinity of Liverpool June 1-30, 1924: Cases, 26.
City Riga	June 1-30.	1		
Palestine:				
Jerusalem	July 29-Aug. 4-..-	2	
Poland.-.---	Aug. 17----.......			June 8-21, 1924: Cases,
Syria:				
Damascus.-	July 14-20....-.-..-	1		
Turkey: Constantinople				
Union of South Africa:	Aug. 3-9.---------	1	----.-.-	
Natal-				
Transvaal-------	June 22-28...-.....	1	.-....--	
Johannesburg .	Jaly 20-26.........-	1		

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued.

Reports Received from June 28 to September 12, 1924. ${ }^{1}$ cholera.

PLAGUE.

[^18]
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued.

Reports Received from June 28 to September 12, 1924—Continued.
PLAGUE-Continued.

Place.	Date.	Cases.	Deaths.	Remarks.
Egypt.-				June 11-30, 1924: Cases, 36. July
City-Alexandria				2-15, 1924: Cases, 8. Total, Jan.
Port Said.	Apr. 24-May 31.--	2	1	responding period, preceding
Suez	Jan. 2-June 26....	11	5	year-cases, 1,190).
Drovino	June 27-July 5...	2		
ProvinceAssiout	Apr. 1-June 18.	40	31	
Beni-Suef	June 21...-	3	3	
Charkieh	Jan. 31.	1	1	
Fayoum	Feb. 18-June 19...	105	32	
Gharbia	Apr. 21-June 17...	2	1	
Ghirga	Jan. 17-May 13...	10	3	
Kalioubieh	Jan. 6-May 22....	10	1	
Kena-.--	Apr.9-May 17-.-	44	26	
Menoufieh	Jan. 2-June 12-...	48	31	
Greece: Mina.	Feb. 5-June 26...	39	20	
Kalamata				Reported July 15, 1924: Cases,
Patras.-	July 7--4	36 2		29; deaths, 6 .
Hawaii Territory				July 15, 1924: Near Kukuihaele,
				Island of Hawaii, 1 plague rat.
India.				Apr. 20-June 28, 1924: Cases, 102,874; deaths, 84,656 .
Do.				June 29-July 5, 1924: Cases, 832;
Bombay.	May 4-June 21.	50	44	deaths, 744.
Do..	June 29-July 12...	3	3	
Calcutta	May 11-June 14...	10	10	
Karachi	May 18-June 21-.-	16	13	
Madras Presidency	May 18-31...	7	2	
Rangoon.	May 11-June 28..-	77	72	
Indo-Chi	June 29-July 19...	64	57	
Indo-China				Jan. 1-Mar. 31, 1924: Cases, 154; deaths, 106.
Saigon.	May 4-June 28.-.-	10	2	Including 100 square kilometers of surrounding country.
Iraq:				
Bagdad...	Apr. 20-June 21..-	121	60	
Shizuoka PrefectureHigashi				To June 20, 1824 Cases, 2;
East Java-				
Soerabaya.-	June 8-21...........	14	14	
Madagascar: Diego Suarez.				Present.
Tamatave....	June 2-30...	2	4	Bubonic.
Tananarive Province..				Apr. 1-June 30, 1924: Cases, 138;
Tananarive Town.	Apr. 1-June 30...-	12	12	deaths, 128; bubonic, pneu-
Persia: Other localities..	do.....-	105	97	monic, septicemic.
Abadan.	May 1-31.	20	12	
Bander Abbas	.do	11	6	
Bushire...	do	1	1	Landed at quarantine.
Peru	-..-do.....--------	111	78	
Peru.				May 1-June 30, 1924: Cases, 9; deaths, 6.
Do.-			---	July 1-31, 1924: Cases, 6; deaths,
Callao.	June 1-30.	1		
Do.	July 1-31............-.	2		
Huaral	June 1-30.	1		
Do.	July 1-31-...---.--	1		
Lima (city)	May 1-June 30-...	5	5	
Lima (country)	May 1-June 30...-	1		
Do.	July 1-31....		1	
Mollendo	...-do.......	1	1	
Bangkola	May 4-June 14...--	3	3	
yria: Beirut	Aug. 4.			Present.

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued.

Reports Received from June 28 to September 12, 1924-Continued.
PLAGUE-Continued.

SMALLPOX.

Bolivia: La Paz.	May 1-June 30...-	10	9	
Do.	July 1-31..-.-------	5	3	
Brazil: Bahia	May 18-24	1		
Porto Alegre	May 18-June 28.	1	2	
Rio de Janeiro.	May 18-24.......-	2		
	July 20-26...--...--	1		
British East Africa: Kenya-				
Mombasa.-	May 4-31 .-........	3		
British Scuth Africa: Northern Rhodesia	May 6-June 30...-	74	1	Na 'ives.
Do......-........	July 1-7.-..........-	2		Do.
Carada: ${ }_{\text {a }}$				
British Columbia- Vancouver.....	June 15-28.	11		
Do.-	June 29-July $26 .$.	18		Not including suburbs.
Victoria-.	Aug. 3-9.-.-------	1		
Manitoba-- Winnipeg	July 13-Aug. 1-..-	3		
New Brunswick- ${ }_{\text {Restigouche }}$ County				
Restigouche County.. Do.	July 6-Aug. 16	19		
Westmoreland County	Aug. 17-23..	1		
Ontario--...-...............-				June 1-30, 1924: Cases, 24. July
Sarnia	July 20-26-.	1		1-31: Cases, 7.
Windsor.	June 22-28-......	1		
Quebec- Montreal	June 8-1	1		
Ceylon:				
Colombo.-.-.......--.....---	July 6-12..........-	1		
Chile: Antofagasta	June 11			Under treatment at lazaretto, 2
alparaiso	Jun			cases.
	June 1-7		1	This report covers the two principal districts of Valparaiso.
China:				
Amoy.-	May 11-June 28..-			Present.
	June 29-July 19...-			Do.
Antang.-.....................-	June 9-29.........	41	3	
	Juy 7-13........-	4		
DO....	June 29-July 12...-			Do.
Foochow	May 18-June 28.			Do.
Do.-.	July 6-12........			Do.
	May 4-June 28....	30	24	
Manchuria----.............-	June 29-July 12..--	3	3	
Dairen.	May 12-Jwne 28.	22	7	
${ }_{\text {Do }}$	June 29-July 6-..-	1	1	
Harbin.	May 13-Jure 23...	2		
Nanking	May 18-June 28...			Do.
Shanghai	May 25-31		1	
Tientsin..........	May 4-June 28...-.	11	1	British municipality.

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued.

Reports Received from June 28 to September 12, 1924-Continued.
SMALLPOX-Continued.

CHOLERA, PLAGUE, SMALLPOX, TYPEUS FEVER, AND YELLOW FEVER-Continued.

Reports Received from June 28 to September 12, 1924-Continued.
 smallpox-Continued.

CHOLERA, PLAGUE, SMALLPOX, TYPHUU FEVER, AND YELLOW FEVER-Continued.
 Reports Received from June 28 to September 12, 1924 -Continued. TYPHUS FEVER-Continued.

Place.	Date.	Cases.	Deaths.	Remarks.
China:				Present.
Antung --	June 2-16..........	6		
Chosen:				
Chemulpo	May 1-June 30-..-	10		
Seoul.--.		43	5	
Egypt: Alexandria	June 25-July 22.	3		
Cairo-....	Feb 19-May 20.	38	9	
Port Said	July 24-29...	2		
Esthonia				Apr. 1-May 31, 1924: Cases, 32.
Germany: Coblenz	July 13-19..	2		
Great Britain:				
Dublin.	June 8-14.	1		
Do.	July 13-19...	1		
Lismore	July 19...	1		
Longford		1		
Greece: Saloniki.	Apr. 20-May 4....	6		
Iraq: ${ }_{\text {Bagdad }}$	Apr. 27-May 10...	2		
Latvia -...				Apr. 1-May 31. 1924: Cases, 82.
Mexico:				
Guadalajara	$\begin{aligned} & \text { July 1-31 } \\ & \text { May 1-June } 30 \end{aligned}$		2	
Mexico City	May 4-June 28..	59		Including municipalities in Federal district. Do.
Do.-	June 29-Aug. 16..-	53		
Torreon.	July 1-31......		2	
Palestine: Jaffa	June 17-23			
Da.	July 8....	1		
Jerusalem	July 1-28	2		
Kantara.	July 15-21..	1		
Peru: Arequipa	Jan. 1-June 30..		4	
Poland.				Mar. 30-June 7, 1924: Cases, 2,616; deaths, 252.
Portugal:				
Oporto.	June 15-21.-		1	
Russia. .-.				Jan. 1-31, 1924; 14,275 cases.
Spain: Barcelona	July 10-16		1	
Syria:				
Aleppo.	June 8-14	1		
Tunis: Tunis	May 27-June 9.	4		
Turkey: Constantinople.		7		
Do.....-	$\begin{aligned} & \text { May } \mathbf{~ J o - 1 9} \text {..... } \end{aligned}$	1	1	
Union of Sourth Africa				Mar. 1-June 30, 1924: Cases, 418; deaths, 45.
Cape Province.				Mar. 1-June 30, 1924: Cases, 249; deaths. 23.
Do				July 6-12: Outbreaks. Mar. 1-June 30, 1924: Cases, 27; deaths, 5. July 6-12: Outbreaks.
Natal				
Durban	Apr. 20-26	1		Mar. 1-June 30, 1924: Cases, 83, deaths, 11.
Orange Free State				
Do.				
Transvaal				June 1-July 5: Outbreaks. Mar. 1-May 31, 1924: Cases, 39, deaths, $\overline{5}$.
Johannesburg	May 11-24	2		
Do.	June 29-July 5...-	1		

YELLOW FEVER.

$\begin{aligned} & \text { Brazil: } \\ & \text { Pernambuco. } \\ & \text { Salvador: } \\ & \text { San Salvador. } \end{aligned}$	May 1i-17. June 10-Aug. 25.	2	1	Present in San Salvador and vicinity.

[^0]: ${ }^{1}$ From Field Investigations in Child Hygiene, United States Public Health Service, in cooperation with the Statistical Office, United States Public Health Service.
 ${ }^{2}$ Fourteenth Census of the United States, 1920, Vol. II, pp. 34; 1043. Burean of the Census, Department of Commerce.
 ${ }^{3}$ Idem, p. 322.
 ${ }^{4}$ Fourteenth Census of the United States, 1920, Vol. II, p. 1098.

[^1]: ${ }^{6}$ See Appendix, Table 12, for rates on such a basis.

[^2]: ${ }^{6}$ A bsenteeism among white and negro school children in Cleveland (Ohio) 1922-23. By G. E. Harmon and C. E. Whitman. , Public Health Reports, vol. 39, No. 12, Mar. 21, 1924, pp. 559-567. (Reprint No. 908).

 Absenteeism because of sickness in certain schools in Cleveland (Ohio) 1922-23. By G. E. Harmon and G. E. Whitman. Public Health Reports, vol. 39, No. 23, June 6, 1924, pp. 1350-1366. (Reprint No. 928.)

[^3]: *Includes respiratory diseases other than colds, grippe and influenza, tonsillitis and sore throat, bronchitis and cough, and pneumonia.
 ** Includes skin diseases other than scabies and pediculosis.

[^4]: - Includes respiratory diseases other than colds, grippe and influenza, tonsillitis and sore throat, bronchitis and cough, and pneumonia.
 ** Includes skin diseases other than scabies and pediculosis.

[^5]: ${ }^{7}$ It frequently happens among school children, as well as among adults, that an illness does not cause continuous absence from school or work. In other words, a single case of illness may cause two or more absences with an interval between them during which the child attends school. For example, a child may be absent on account of a cold on Monday, be present on Tuesday and Wednesday, and again absent on account an exacerbation of the same cold on Thursday. An investigation of any large number of cases on this basis would be difficult and expensive. The data for this study do not differentiate exacerbations from new cases. Therefore, in making tabulations it seemed reasonable to assume that an absence on ac-

[^6]: * Includes respiratory diseases other than colds, grippe and influenza, tonsillitis and sore throat, bronchitis and cough, and pneumonia.
 ** Includes skin diseases other than scabies and pediculosis.

[^7]: count of illness from the same cause should not be counted as a new case unless there was an interval of eight calendar days or longer between the end of one absence and the beginning of the next. An interval of seven calendar days (one calendar week) or less is, of course, an arbitrary limit which may classify in some instances two new cases as a single case, and in other instances make two new cases of a single case with two absences, such as a case with a relapse. However, in the choice of tabulating every absence as a soparate case and the assumption of at least a week's interval between cases of the same disease as constituting a new case, the latter seemed to be the better procedure.
 In the case of headache, toothache, and a few other similar conditions, exceptions were made to this general rule because of the usually short duration of an attack, and each continuous absence was counted as a case regardless of the interval between absences due to these disorders.
 For the school year 1922-23 both absences and cases were tabulated, and A ppendix Tables 10 and 11 show the number of both absences and cases for each disease and for each age for all diseases combined.

[^8]: ${ }^{8}$ Statistics of influenza morbidity, with special reference to certain factors in case incidence and case fatality. By W. H. Frost. Public Health Reports, vol. 35, No. 11, March 12, 1920, pp 584-597. (Reprint No. 586.)

[^9]: ${ }^{1}$ A unit as used in this paper refers to the extract from 0.000001 gm . of dry mature pollen as defined by L. Noon (2).
 ${ }^{2} \mathrm{~A}$ unit of amboceptor is defined as the least amount giving complete hemolysis of 0.2 c . c. of 1.2 per cent suspension of sheep cells in the presence of 0.2 c . c. of $1: 20$ dilution of guinea pig complement after one hour in the $37.5^{\circ} \mathrm{C}$. water bath.
 ${ }^{3}$ A unit of complement is defined as the least amount, following a preliminary incubation of one hour at 37.5° C., causing complete hemolysis of 0.2 c . c. of 1.2 per cent sheep cell suspension in the presence of 2 units of amboceptor and an average dose of antigen (50 units).

[^10]: 4 Coca's fluid is prepared by dissolving sodium chloride 5 gms . and sodium biearbonate 2.7 gms . in distilled water 1,000 c.c.

[^11]: - Clock had previously made use of glycerin as a preservative for pollen extract.
 - In view of the apparent lability of the complement-binding property of some extracts it was deemed desirable to have the preservative action of glycerin present during the extraction rather than add it later.

[^12]: ${ }^{7}$ Complement-fixation tests showed the extraction to be complete at the ead of five days when 1 gram of pollen and 100 mils of extractive were employed; but when 2 grams of pollen were used with the same volume of extractive an increase in complement-binding power was noted to the seventh day.

[^13]: ${ }^{1}$ Population Jan. 1, 1920.

[^14]: ${ }^{1}$ Population Jan. 1, 1920.

[^15]: 1 Figures for Cleveland, Ohio, estimated. Reports not received at time of going to press.
 2 Figures for Raleigh, N. C., estimated.
 Figures for Montgomery, Ala., estimated.

[^16]: ${ }^{1}$ From the interior, 15.

[^17]: ${ }^{1}$ Public Health Reports, Sept. 5, 1924, p. 2335.

[^18]: ${ }^{1}$ From medical officers of the Public Health Service, American consuls, and other sources.

